Problem Description
Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.
 
 
Input
The first line of the input contains an integer 
T(1<=T<=20) which means the number of test cases. Then T lines follow, 
each line starts with a number N(1<=N<=100000), then N integers 
followed(all the integers are between -1000 and 1000).
 
 
Output
For each test case, you should output two lines. The 
first line is "Case #:", # means the number of the test case. The second line 
contains three integers, the Max Sum in the sequence, the start position of the 
sub-sequence, the end position of the sub-sequence. If there are more than one 
result, output the first one. Output a blank line between two cases.
 
 
Sample Input
2
5 6 -1 5 4 -7
7 0 6 -1 1 -6 7 -5
 
 
 
Sample Output
Case 1:
14 1 4
Case 2:
7 1 6
| 
 思路 
 | 
 状态转移方程是:sum[i]=sum[i-1]>0?:sum[i-1]+a[i]:a[i] 
 | 
| 
 源码 
 | 
 #include<stdio.h> 
#define min -99999999 
int main () 
{ 
    int i, n, m, sum, end, start, j, son, b, maxsum; 
    scanf("%d", &n) ; 
    for(i=1; i<=n; i++ )  
    { 
        scanf("%d", &m ) ; 
        start=0; 
        end=0 ; 
        maxsum=min ; 
        sum=0 ; 
        b=1 ; 
        for(j=1; j<=m; j++ )  
        { 
            scanf("%d", &son) ; 
            sum+=son ; 
            if(sum>maxsum)  
            { 
                 maxsum=sum ; 
                 start=b; 
                 end=j ; 
            } 
                     if(sum<0)  
                     { 
                            sum = 0; 
                            b = j+1 ; 
                     } 
              } 
        printf( "Case %d:\n", i) ; 
        printf( "%d %d %d\n", maxsum, start, end); 
        if(i!=n)  
                     printf("\n") ; 
    } 
} 
 |