进行2014年和2015年的财政收入的预测

一、灰色预测+SVR

import numpy as np
import pandas as pd

inputfile = 'data/data.csv' # 输入的数据文件
data = pd.read_csv(inputfile) # 读取数据

# 描述性统计分析
description = [data.min(), data.max(), data.mean(), data.std()]  # 依次计算最小值、最大值、均值、标准差
description = pd.DataFrame(description, index = ['Min', 'Max', 'Mean', 'STD']).T  # 将结果存入数据框
print('描述性统计结果:\n',np.round(description, 2))  # 保留两位小数

 

 

# 相关性分析
corr = data.corr(method = 'pearson')  # 计算相关系数矩阵
print('相关系数矩阵为:\n',np.round(corr, 2))  # 保留两位小数

 

 热值热力图:

# 绘制热力图
import matplotlib.pyplot as plt
import seaborn as sns
plt.subplots(figsize=(10, 10)) # 设置画面大小 
sns.heatmap(corr, annot=True, vmax=1, square=True, cmap="Blues")
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号 
plt.title('相关性热力图')
plt.show()
plt.close

  

对影响因素进行筛选,得到对财政收入影响较大的关键因素:

import numpy as np
import pandas as pd
from sklearn.linear_model import Lasso

inputfile = 'data.csv' # 输入的数据文件
data = pd.read_csv(inputfile) # 读取数据
lasso = Lasso(1000) # 调用Lasso()函数,设置λ的值为1000
lasso.fit(data.iloc[:,0:13],data['y'])
print('相关系数为:',np.round(lasso.coef_,5)) # 输出结果,保留五位小数
print('相关系数非零个数为:',np.sum(lasso.coef_ != 0)) # 计算相关系数非零的个数

mask = lasso.coef_ != 0 # 返回一个相关系数是否为零的布尔数组
print('相关系数是否为零:',mask)
mask = np.append(mask,True)

outputfile ='new_reg_data.csv' # 输出的数据文件
new_reg_data = data.iloc[:, mask] # 返回相关系数非零的数据
new_reg_data.to_csv(outputfile) # 存储数据
print('输出数据的维度为:',new_reg_data.shape) # 查看输出数据的维度

  

 

进行灰度预测:

import sys
sys.path.append('../code')  # 设置路径
import numpy as np
import pandas as pd
from GM11 import GM11  # 引入自编的灰色预测函数

inputfile1 = '../tmp/new_reg_data.csv'  # 输入的数据文件
inputfile2 = '../data/data.csv'  # 输入的数据文件
new_reg_data = pd.read_csv(inputfile1,index_col=0)  # 读取经过特征选择后的数据
data = pd.read_csv(inputfile2)  # 读取总的数据
new_reg_data.index = range(1994, 2014)
new_reg_data.loc[2014] = None
new_reg_data.loc[2015] = None
l = ['x1', 'x3', 'x4', 'x5', 'x6', 'x7', 'x8', 'x13']
for i in l:
  f = GM11(data[i][:20].values)[0] 
  new_reg_data.loc[2014,i] = f(len(new_reg_data)-1)  # 2014年预测结果
  new_reg_data.loc[2015,i] = f(len(new_reg_data))  # 2015年预测结果
  new_reg_data[i] = new_reg_data[i].round(2)  # 保留两位小数
outputfile = 'new_reg_data_GM11.xls'  # 灰色预测后保存的路径
y = list(data['y'].values)  # 提取财政收入列,合并至新数据框中
y.extend([np.nan,np.nan])
new_reg_data['y'] = y
new_reg_data.to_excel(outputfile)  # 结果输出
print('预测结果为:\n',new_reg_data.loc[2014:2015,:])  # 预测结果展示

 

 SVR预测模型

 

import matplotlib.pyplot as plt
from sklearn.svm import LinearSVR

inputfile = './tmp/new_reg_data_GM11.xls'  # 灰色预测后保存的路径
data = pd.read_excel(inputfile)  # 读取数据
feature = ['x1', 'x3', 'x4', 'x5', 'x6', 'x7', 'x8', 'x13']  # 属性所在列
data_train = data.iloc[0:20].copy()  # 取2014年前的数据建模 
data_mean = data_train.mean()
data_std = data_train.std()
data_train = (data_train - data_mean)/data_std  # 数据标准化
x_train = data_train[feature].values  # 属性数据
y_train = data_train['y'].values  # 标签数据

linearsvr = LinearSVR()  # 调用LinearSVR()函数
linearsvr.fit(x_train,y_train)
x = ((data[feature] - data_mean[feature])/data_std[feature]).values  # 预测,并还原结果。
data['y_pred'] = linearsvr.predict(x) * data_std['y'] + data_mean['y']
outputfile = './tmp/new_reg_data_GM11_revenue.xls'  # SVR预测后保存的结果
data.to_excel(outputfile)

print('真实值与预测值分别为:\n',data[['y','y_pred']]) 

fig = data[['y','y_pred']].plot(subplots = True, style=['b-o','r-*'])  # 画出预测结果图
plt.show()

 

 差分

import warnings
warnings.filterwarnings("ignore")

# 差分后的结果
D_data = pre_data.diff().dropna()
D_data.columns = ['y差分']
D_data.plot()  # 时序图
plt.show()
plot_acf(D_data).show()  # 自相关图
from statsmodels.graphics.tsaplots import plot_pacf
plot_pacf(D_data).show()  # 偏自相关图
print('差分序列的ADF检验结果为:', ADF(D_data['y差分']))  # 平稳性检测

 

posted @ 2022-04-03 00:07  hhh黄如  阅读(58)  评论(0)    收藏  举报