银行分控模型的建立
#神经网络预测 import pandas as pd import numpy as np # 参数初始化 filename=r'data\bankloan.xls' data=pd.read_excel(filename) x=data.iloc[:,:8].values y=data.iloc[:,8].values # 获取二分类数据 from keras.models import Sequential from keras.layers.core import Dense, Activation model = Sequential() # 建立模型 model.add(Dense(input_dim = 8, units = 10)) model.add(Activation('relu')) # 用relu函数作为激活函数,能够大幅提供准确度 model.add(Dense(input_dim = 18, units = 1)) model.add(Activation('sigmoid')) # 由于是0-1输出,用sigmoid函数作为激活函数 model.compile(loss = 'binary_crossentropy', optimizer = 'adam') # 编译模型。由于我们做的是二元分类,所以我们指定损失函数为binary_crossentropy,以及模式为binary # 另外常见的损失函数还有mean_squared_error、categorical_crossentropy等,请阅读帮助文件。 # 求解方法我们指定用adam,还有sgd、rmsprop等可选 model.fit(x, y, epochs = 1000, batch_size = 10) # 训练模型,学习一千次 predict_x=model.predict(x) classes_x=np.argmax(predict_x,axis=1) score = model.evaluate(x,y,batch_size=10) # 模型评估 print(score) from cm_plot import * #导入自行编写的混淆矩阵可视化函数 cm_plot(y,classes_x).show() #显示混淆矩阵可视化结果
运行结果如下:

import pandas as pd
filename ='bankloan.xls'
data = pd.read_excel(filename) # 导入数据
x = data.iloc[:,:8].astype(int)
y = data.iloc[:,8].astype(int)
from sklearn.tree import DecisionTreeClassifier as DTC
dtc = DTC(criterion='entropy')
dtc.fit(x, y)
from sklearn.tree import export_graphviz
x = pd.DataFrame(x)
"""
string1 = '''
edge [fontname="NSimSun"];
node [ fontname="NSimSun" size="15,15"];
{
'''
string2 = '}'
"""
with open("tree.dot", 'w') as f:
export_graphviz(dtc, feature_names = x.columns, out_file = f)
f.close()
from IPython.display import Image
from sklearn import tree
import pydotplus
dot_data = tree.export_graphviz(dtc, out_file=None,
feature_names=data.columns[:8],
class_names=data.columns[8],
filled=True, rounded=True,
special_characters=True)
dot_data = dot_data.replace('helvetica 14', 'MicrosoftYaHei 14') #修改字体
graph = pydotplus.graph_from_dot_data(dot_data)
graph.write_png('banktree.png') #保存图像
Image(graph.create_png())
import matplotlib.pyplot as plt
img = plt.imread('banktree.png')
fig = plt.figure('show picture')
plt.imshow(img)
运行代码结果如下:


浙公网安备 33010602011771号