1.用python实现K均值算法
import numpy as np x = np.random.randint(1,100,20)#产生的20个一到一百的随机整数 y = np.zeros(20) k = 3 print(x) print(y) def initcenter(x,k):#初始化聚类中心数组 return x[0:k].reshape(k) kc = initcenter(x,k) print(kc) def nearest(kc, i):#定义函数求出kc与i之差最小的数的坐标 d = (abs(kc - i)) w = np.where(d == np.min(d)) return w[0][0] # print(nearest(kc,66)) # for i in range(x.shape[0]): # y[i] = nearest(kc,x[i]) # print(y) def xclassify(x, y, kc):#按距离最近的准则将它们分到距离它们最近的聚类中心(最相似)所对应的类 for i in range(x.shape[0]): y[i] = nearest(kc,x[i]) return y y = xclassify(x,y,kc) print(x) print(y)
#.用sklearn.cluster.KMeans,鸢尾花完整数据做聚类并用散点图显示. import matplotlib.pyplot as plt import numpy as np from sklearn.datasets import load_iris iris=load_iris() print(iris) X=iris.data print(X) from sklearn.cluster import KMeans est = KMeans(n_clusters=3) est.fit(X) kc = est.cluster_centers_ y_kmeans = est.predict(X) #预测每个样本的聚类索引 print(y_kmeans,kc) print(kc.shape,y_kmeans.shape) plt.scatter(X[:,0],X[:,1],c=y_kmeans,s=50,cmap='rainbow') plt.show()
# 鸢尾花完整数据做聚类并用散点图显示. from sklearn.cluster import KMeans import numpy as np from sklearn.datasets import load_iris import matplotlib.pyplot as plt data = load_iris() iris = data.data petal_len = iris print(petal_len) k_means = KMeans(n_clusters=3) #三个聚类中心 result = k_means.fit(petal_len) #Kmeans自动分类 kc = result.cluster_centers_ #自动分类后的聚类中心 y_means = k_means.predict(petal_len) #预测Y值 plt.scatter(petal_len[:,0],petal_len[:,2],c=y_means, marker='p',cmap='rainbow') plt.show()