![image]()
import cv2
import numpy as np
def stitch_image(img1, img2, H):
# 1. 获得每张图的4个角点
h1, w1 = img1.shape[:2]
h2, w2 = img2.shape[:2]
img1_dims = np.float32([[0, 0], [0, h1], [w1, h1], [w1, 0]]).reshape(-1, 1, 2)
img2_dims = np.float32([[0, 0], [0, h2], [w2, h2], [w2, 0]]).reshape(-1, 1, 2)
# 2. 变换图片(旋转、平移)
img1_transform = cv2.perspectiveTransform(img1_dims, H)
# 3. 创建一张大图,拼接
result_dims = np.concatenate((img2_dims, img1_transform), axis=0)
# 4. 输出
[x_min, y_min] = np.int32(result_dims.min(axis=0).ravel() - 0.5)
[x_max, y_max] = np.int32(result_dims.max(axis=0).ravel() + 0.5)
# 平移的距离
transform_dist = [-x_min, -y_min]
transform_array = np.array([[1, 0, transform_dist[0]],
[0, 1, transform_dist[1]],
[0, 0, 1]])
result_img = cv2.warpPerspective(img1, transform_array.dot(H), (x_max-x_min, y_max-y_min))
result_img[transform_dist[1]:transform_dist[1]+h2,
transform_dist[0]:transform_dist[0]+w2] = img2
return result_img
# 计算单应性矩阵
def get_homo(img1, img2):
# 1 创建特征转换对象
sift = cv2.xfeatures2d.SIFT_create()
# 2 通过特征转换对象获得特征点和描述子
k1, d1 = sift.detectAndCompute(img1, None)
k2, d2 = sift.detectAndCompute(img2, None)
# 3 创建特征匹配器
bf = cv2.BFMatcher()
# 4 进行特征匹配
matches = bf.knnMatch(d1, d2, k=2)
# 5 过滤特征,找出有效的特征匹配点
verify_ratio = 0.8
verify_matches = []
for m1, m2 in matches:
if m1.distance < 0.8 * m2.distance:
verify_matches.append(m1)
min_matches = 8
if len(verify_matches) > min_matches:
img1_pts = []
img2_pts = []
for m in verify_matches:
img1_pts.append(k1[m.queryIdx].pt)
img2_pts.append(k2[m.trainIdx].pt)
img1_pts = np.float32(img1_pts).reshape(-1, 1, 2)
img2_pts = np.float32(img2_pts).reshape(-1, 1, 2)
H, mask =cv2.findHomography(img1_pts, img2_pts, cv2.RANSAC, 5.0)
return H
else:
print("error: no enough matches")
exit()
# 第一步:读取文件,设为一样大小 640x480
img1 = cv2.imread('img/map2.jpg')
img2 = cv2.imread('img/map1.jpg')
img1 = cv2.resize(img1, (640, 480))
img2 = cv2.resize(img2, (640, 480))
inputs = np.hstack((img1, img2))
# 获得单应性矩阵
H = get_homo(img1, img2)
# 根据单应性矩阵对图像进行变换,然后平移, 拼接并输出结果
result_img = stitch_image(img1, img2, H)
cv2.imshow('1', img1)
cv2.imshow('2', img2)
cv2.imshow('result', result_img)
cv2.waitKey(0)