数据结构-(二叉)堆的模板(可用功能:建堆,删除最值,插入元素)

堆是一种特殊的数据结构,它有两个特性:

  1. 底层实现结构是完全二叉树(定义:当且仅当一棵树每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对应时称之为完全二叉树。)
  2. 如果是大根堆,那么保证每个节点的值都比父节点小,如果是小根堆,那么保证每个节点的值都比父节点大

建堆就是把一堆数据塞进堆里,因为数据很可能是无序的,所以说为了把一堆杂乱无章的数据整合成上面的样子, 就需要一些特别的操作,有两种调整模式:

  1. 向上调整。也就是对于一个节点要和它的父节点比较大小,若需要调整则和父节点交换,然后把查询位置更新到父节点的位置,继续迭代查询,终止条件为当前位置是根节点的位置。
  2. 向下调整。也就是对于每层的有子结点的父节点来说,向下查询那个较大的子结点的值是不是大于本父节点(因为有两个子节点),如果是,就交换,然后迭代向下查询,终止条件是当前节点不存在子节点。

添加数据:就是在根末(数组尾部)添加一个元素,然后从此元素的位置进行向上调整即可

删除最大值/最小值 (分别对应大根堆和小根堆):只需将根节点和根末节点(数组尾部元素)进行交换,然后将容量减一抛出根节点,再从根节点位置进行向下调整即可。

#include<pch.h>
#include <iostream>
#include <cstdio>
#include <bits/stdc++.h>
#include <map>
#include <algorithm>
#include <stack>
#include <iomanip>
#include <cstring>
#include <cmath>
#define DETERMINATION main
#define lldin(a) scanf_s("%lld", &a)
#define println(a) printf("%lld\n", a)
#define reset(a, b) memset(a, b, sizeof(a))
#define debug cout<<"procedures above are available"<<endl;
using namespace std;
const int INF = 0x3f3f3f3f;
const double PI = acos(-1);
typedef long long ll;
typedef unsigned long long ull;
typedef long double ld;
const int mod = 1000000007;
const int tool_const = 19991126;
const int tool_const2 = 33;
inline ll lldcin()
{
	ll tmp = 0, si = 1;
	char c;
	c = getchar();
	while (c > '9' || c < '0')
	{
		if (c == '-')
			si = -1;
		c = getchar();
	}
	while (c >= '0' && c <= '9')
	{
		tmp = tmp * 10 + c - '0';
		c = getchar();
	}
	return si * tmp;
}
/*Maintain your determination.Nobody knows the magnificent landscape 
at his destination before the arrival with stumble.*/
/**Last Remote**/
ll Heap[12];
ll Volume = 10;
void DownwardAdjustment(ll CurrentPosition,ll Limit)
{
	while (CurrentPosition * 2 <= Limit)
	{
		ll downstair = CurrentPosition * 2;
		if (downstair + 1 <= Limit && Heap[downstair + 1] > Heap[downstair])
			downstair++;
		if (Heap[CurrentPosition] < Heap[downstair])
		{
			swap(Heap[CurrentPosition], Heap[downstair]);
			CurrentPosition = downstair;
		}
		else
			break;
	}
}
void construction(ll Limit)
{
	for (int i = Limit / 2; i >= 1; i--)
		DownwardAdjustment(i, Limit);
}
void UpwardAdjustment(ll CurrentPosition)
{
	while (CurrentPosition > 1 && Heap[CurrentPosition] > Heap[CurrentPosition / 2])
	{
		swap(Heap[CurrentPosition], Heap[CurrentPosition / 2]);
		CurrentPosition /= 2;
	}
}
void Addition(ll Element)
{
	Heap[++Volume] = Element;
	UpwardAdjustment(Volume);
}
void EraseRoot(ll Root,ll &Limit)
{
	swap(Heap[Root], Heap[Limit]);
	Limit--;
	DownwardAdjustment(Root, Limit);
}
int DETERMINATION()
{
	ios::sync_with_stdio(false);
	cin.tie(0), cout.tie(0);
	for (int i = 1; i <= Volume; i++)
		Heap[i] = rand() % 100+1;
	for (int i : Heap)
		if(i!=0)
			cout << i << " ";
	cout << endl;
	debug;
	construction(Volume);
	ll n;
	cin >> n;
	Addition(n);
	while (Volume >= 1)
	{
		cout << Heap[1] << endl;
		EraseRoot(1, Volume);
	}
	return 0;
}

 

posted @ 2019-08-04 22:30  完全墨染的樱花  阅读(189)  评论(0)    收藏  举报