HNU 1447 最长上升路径
最长上升路径
Time Limit: 3 Sec Memory Limit: 128 MB Submissions: 103 Solved: 15Description
给定n个顶点m条边的有向图,每一条边上都有一个正整数权值。一条有向路径被称为上升路径当且仅当除了路径上第一条边外,每一条表上的权值都严格大于路径上前一条边的权值。路径长度定义为路径所包含的边数,求给定图中最长上升路径长度。
Input
第一行是测试数据组数k。
接下来是k组测试数据。每组数据开始为n(n<=5000)和m(m<=100000)。接下来m行每行三个整数,表示图中一条边,格式为a b c,表示有一条从a到b的边,边权值为c。a和b是0到n-1的整数。
Output
每个测试数据输出一行。输出图中最长上升路径长度。
Sample Input
2 3 4 0 1 1 1 2 1 0 1 2 1 2 2 4 4 0 1 1 1 3 1 0 2 2 2 3 2
Sample Output
2 1
HINT
Source
AC:
1 #include <cstdio> 2 #include <iostream> 3 #include <vector> 4 #include <set> 5 #include <cstring> 6 #include <string> 7 #include <map> 8 #include <cmath> 9 #include <stack> 10 #include <ctime> 11 #include <algorithm> 12 #include <queue> 13 14 using namespace std; 15 #define INF 0x7fffffff 16 #define maxm 1001 17 #define mod 1000000007 18 #define mp make_pair 19 #define pb push_back 20 #define rep(i,n) for(int i = 0; i < (n); i++) 21 #define re return 22 #define fi first 23 #define se second 24 #define sz(x) ((int) (x).size()) 25 #define all(x) (x).begin(), (x).end() 26 #define sqr(x) ((x) * (x)) 27 #define sqrt(x) sqrt(abs(x)) 28 #define y0 y3487465 29 #define y1 y8687969 30 #define fill(x,y) memset(x,y,sizeof(x)) 31 32 typedef vector<int> vi; 33 typedef long long ll; 34 typedef long double ld; 35 typedef double D; 36 typedef pair<int, int> ii; 37 typedef vector<ii> vii; 38 typedef vector<string> vs; 39 typedef vector<vi> vvi; 40 41 template<class T> T abs(T x) { re x > 0 ? x : -x; } 42 const int maxn = 100015; 43 int n, m, t, k, x, l, r, s, sk,y; 44 int dp[maxn]; 45 struct edge{ 46 int u, v, dist; 47 }edges[maxn]; 48 bool cmp(edge a, edge b){ return a.dist < b.dist; } 49 pair<int, int>p; 50 int main(){ 51 scanf("%d", &t); 52 while (t--){ 53 scanf("%d%d", &n, &m); 54 memset(dp, 0, sizeof dp); 55 stack<pair<int, int> >S; 56 int ans = 0,i,j; 57 for (int i = 0; i < m; i++)scanf("%d%d%d", &edges[i].u, &edges[i].v, &edges[i].dist); 58 sort(edges, edges + m, cmp); 59 for (int i = 0; i < m; i=j){ 60 for (j = i; edges[i].dist == edges[j].dist;j++) 61 if (dp[edges[j].u] + 1>dp[edges[j].v]){ 62 p.first = edges[j].v; p.second = dp[edges[j].u] + 1; 63 S.push(p); 64 } 65 while (!S.empty()){ 66 p = S.top(); S.pop(); 67 dp[p.first] = max(dp[p.first], p.second); 68 } 69 } 70 for (int i = 0; i < n; i++)ans = max(ans, dp[i]); 71 printf("%d\n", ans); 72 } 73 return 0; 74 }
TLE:
1 #include <cstdio> 2 #include <cstring> 3 #include <algorithm> 4 using namespace std; 5 #define maxn 100005 6 int n, m, t; 7 struct edge{ 8 int v, dist, next; 9 }edges[maxn]; 10 int head[5005],dp[maxn]; 11 void init(){ 12 for (int i = 0; i < maxn; i++)head[i] = -1; 13 } 14 void add(int u, int v, int dist, int id){ 15 edges[id].v = v; edges[id].dist = dist; edges[id].next = head[u]; head[u] = id; 16 } 17 int dfs(int u){ 18 if (dp[u] == -1){ 19 dp[u] = 1; 20 for (int i = head[edges[u].v]; i != -1; i = edges[i].next) 21 if (edges[i].dist>edges[u].dist)dp[u] = max(dp[u], dfs(i) + 1); 22 } 23 return dp[u]; 24 } 25 int main(){ 26 scanf("%d", &t); 27 while (t--){ 28 scanf("%d%d", &n, &m); 29 init(); 30 memset(dp, -1, sizeof dp); 31 for (int i = 0; i < m; i++){ 32 int a, b, len; 33 scanf("%d%d%d", &a, &b, &len); 34 add(a, b, len, i); 35 } 36 int ans = 0; 37 for (int i = 0; i < m; i++)if (dp[i] == -1)ans = max(ans, dfs(i)); 38 printf("%d\n", ans); 39 } 40 return 0; 41 }
浙公网安备 33010602011771号