SGU 108 Self-numbers 2
|
108. Self-numbers 2 time limit per test: 1 sec. memory limit per test: 4096 KB
In 1949 the Indian mathematician D.R. Kaprekar discovered a class of numbers called self-numbers. For any positive integer n, define d(n) to be n plus the sum of the digits of n. (The d stands for digitadition, a term coined by Kaprekar.) For example, d(75) = 75 + 7 + 5 = 87. Given any positive integer n as a starting point, you can construct the infinite increasing sequence of integers n, d(n), d(d(n)), d(d(d(n))), .... For example, if you start with 33, the next number is 33 + 3 + 3 = 39, the next is 39 + 3 + 9 = 51, the next is 51 + 5 + 1 = 57, and so you generate the sequence 33, 39, 51, 57, 69, 84, 96, 111, 114, 120, 123, 129, 141, ... The number n is called a generator of d(n). In the sequence above, 33 is a generator of 39, 39 is a generator of 51, 51 is a generator of 57, and so on. Some numbers have more than one generator: for example, 101 has two generators, 91 and 100. A number with no generators is a self-number. Let the a[i] will be i-th self-number. There are thirteen self-numbers a[1]..a[13] less than 100: 1, 3, 5, 7, 9, 20, 31, 42, 53, 64, 75, 86, and 97. (the first self-number is a[1]=1, the second is a[2] = 3, :, the thirteen is a[13]=97);
Input Input contains integer numbers N, K, s1...sk. (1<=N<=107, 1<=K<=5000) delimited by spaces and line breaks.
Output At first line you must output one number - the quantity of self-numbers in interval [1..N]. Second line must contain K numbers - a[s1]..a[sk], delimited by spaces. It`s a gaurantee, that all self-numbers a[s1]..a[sk] are in interval [1..N]. (for example if N = 100, sk can be 1..13 and cannot be 14, because 14-th self-number a[14] = 108, 108 > 100)
Sample Input 100 10 1 2 3 4 5 6 7 11 12 13 Sample Output 13 1 3 5 7 9 20 31 75 86 97 |
1 #pragma comment(linker, "/STACK:1024000000,1024000000") 2 #include <map> 3 #include <queue> 4 #include <vector> 5 #include <string> 6 #include <cmath> 7 #include <cstdio> 8 #include <cstring> 9 #include <cstdlib> 10 #include <iostream> 11 #include <algorithm> 12 using namespace std; 13 #define maxn 5005 14 #define ll long long 15 #define INF 0x7fffffff 16 #define eps 1e-8 17 pair<int, int>a[maxn]; 18 int n,m,k,t,x,pos; 19 bool v1[64], v2[64]; 20 int ans[maxn]; 21 int main(){ 22 while (~scanf("%d%d",&n,&k)){ 23 for (int i = 0; i < k; i++){ scanf("%d", &a[i].first); a[i].second = i; } 24 sort(a, a + k); 25 pos = 0;t = 0; 26 memset(v1, true, sizeof v1); 27 memset(v2, true, sizeof v2); 28 for (int i = 1; i <= n; i++){ 29 if (i % 64 == 0){ 30 memcpy(v1, v2,64); 31 memset(v2, true, sizeof v2); 32 } 33 if (v1[i % 64]){ 34 t++; 35 while (a[pos].first == t)ans[a[pos++].second] = i; 36 } 37 m = 0;x = i; 38 while (x){ 39 m += x % 10; 40 x /= 10; 41 } 42 if (m + i % 64 >= 64)v2[(m + i % 64)%64] = false; 43 else v1[m + i % 64] = false; 44 } 45 printf("%d\n", t); 46 for (int i = 0; i < k; i++)printf(i == k - 1 ? "%d\n" : "%d ", ans[i]); 47 } 48 return 0; 49 }
浙公网安备 33010602011771号