南开大学物理化学2-1第五章——统计力学公式合集
第五章 统计力学基本原理
1. 波函数与简并能级
-
t: 平动 r: 转动 \(\nu\):振动 e:电子 n:核
-
\(\epsilon=\epsilon_t+\epsilon_r+\epsilon_\nu+\epsilon_e+\epsilon_n\)
-
\(\psi=\psi_t\psi_r\psi_\nu\psi_e\psi_n\)
-
\(g=g_tg_rg_\nu{g_e}g_n\)
-
\(q=\sum\limits_jg_jexp(-\frac{\epsilon_j}{kT})\)
1.1. 外部项
1.1.1. 平动能
-
三维平动子且为立方体势箱(a=b=c)
-
\(\epsilon_t=\frac{h^2}{8mV^\frac{2}{3}}(n_x^2+n_y^2+n_z^2)\)
-
\(\epsilon_t=\frac{h^2}{8mV^\frac{2}{3}}(n_x^2+n_y^2+n_z^2)\)
-
\(n_x,\ n_y,\ n_z\in{N^*}\)
-
-
非立方体势箱
- \(\epsilon_t=\frac{h^2}{8m}(\frac{n_x^2}{a^2}+\frac{n_y^2}{b^2}+\frac{n_z^2}{c^2})\)
- \(n_x,\ n_y,\ n_z\in{N^*}\)
1.1.2. 转动能
- \(\epsilon_r=\frac{J(J+1)h^2}{8\pi^2I}\ \ \ \ J\in{N}\)
- \(g_r=2J+1\)
- \(I=\mu{r^2}\) 刚性转子,此处的r为两原子距离
- \(\mu=\frac{m_1m_2}{m_1+m_2}\)
1.1.3. 振动能
- \(\epsilon_\nu=(v+\frac{1}{2})h\nu\) \(v\in{N}\)
- \(g_\nu=1\)
- 这里的量子数是v,振动频率是nu
2. 波尔兹曼熵定理
- \(S=k\ln\Omega\approx{k\ln{t_m}}\) 孤立体系
- \(\ln{N!}\approx{N\ln{N}}-N\)
- 两条约束条件
- \(\sum\limits_jn_j=N\)
- \(\sum\limits_jn_j\epsilon_j=U\)
2.1 近独立可别粒子体系玻尔兹曼统计
-
\(t_m=N!\prod\limits_j\frac{g_j^{n_j}}{n_j!}\)
-
\(n_j^*=\frac{N}{q}g_je^{-\frac{\epsilon_j}{kT}}\)
-
\(\frac{n_i}{n_j}=\frac{g_iexp(-\frac{\epsilon_i}{kT})}{g_jexp(-\frac{\epsilon_j}{kT})}\)
-
\(\frac{n_i}{N}=\frac{g_iexp(-\frac{\epsilon_i}{kT})}{q}\)
2.2 近独立等同粒子体系玻尔兹曼统计
-
\(t_X=\prod\limits_j\frac{g_j^{n_j}}{n_j!}\)
-
\(n_j=\frac{N}{q}g_je^{-\frac{\epsilon_j}{kT}}\)
2.3 玻色-爱因斯坦统计
-
\(t_{B\cdot{E}}=\prod\limits_j\frac{(n_j+g_j)!}{n_j!g_j!}\)
-
\(t_{B\cdot{E}}\approx\prod\limits_j\frac{g_j^{n_j}}{n_j!}\) \(g_j\gg{n_j}\)
-
\(n_j=\frac{g_j}{exp(-\alpha-\beta\epsilon_j)-1}\)
2.4 费米-狄拉克统计
-
\(t_{F\cdot{D}}=\prod\limits_j\frac{g_j!}{n_j!(g_j-n_j)!}\)
-
\(t_{F\cdot{D}}\approx\prod\limits_j\frac{g_j^{n_j}}{n_j!}\) \(g_j\gg{n_j}\)
-
\(n_j=\frac{g_j}{exp(-\alpha-\beta\epsilon_j)+1}\)
3. 热力学量
3.1 近独立等同粒子体系玻尔兹曼统计
- 熵S
- \(S=\frac{U}{T}+k\ln\frac{q^N}{N!}\)
- \(S=k\ln\frac{q^N}{N!}+NkT(\frac{\partial\ln{q}}{\partial{T}})_{V,N}\) 封闭恒容
- \(S=Nk\ln\frac{q}{N}+NkT(\frac{\partial\ln{q}}{\partial{T}})_{p,N}\) 封闭恒压
- \(A=-NkT-NkT\ln\frac{q}{N}\)
- \(G=-NkT\ln\frac{q}{N}\) 理想气体
- \(U=NkT^2(\frac{\partial\ln{q}}{\partial{T}})_{V,N}\)
- \(H=NkT^2(\frac{\partial\ln{q}}{\partial{T}})_{p,N}\)
- \(\mu=-kT\ln{\frac{q}{N}}\) 单分子
- \(\mu_m=-RT\ln\frac{q}{N}\) 摩尔化学势
3.2 近独立可别粒子体系玻尔兹曼统计
- 熵S
- \(S=\frac{U}{T}+Nk\ln{q}\)
- \(S=k\ln{q^N}+NkT(\frac{\partial\ln{q}}{\partial{T}})_{V,N}\) 封闭恒容
- \(A=-NkT\ln{q}\)
- \(G=-NkT\ln{q}+NkTV(\frac{\partial{\ln{q}}}{\partial{V}})_{T,N}\)
- \(U=NkT^2(\frac{\partial\ln{q}}{\partial{T}})_{V,N}\)
- \(H=NkT^2(\frac{\partial\ln{q}}{\partial{T}})_{V,N}+NkTV(\frac{\partial{\ln{q}}}{\partial{V}})_{T,N}\)
3.3 近独立等同粒子体系玻尔兹曼统计各项目
- 熵S 封闭恒容
- \(S=Nk+Nk\ln\frac{q}{N}+NkT(\frac{\partial\ln{q}}{\partial{T}})_{V,N}=S_t+S_r+S_\nu+S_e+S_n\)
- \(S_t=Nk+Nk\ln\frac{q_t}{N}+NkT(\frac{\partial\ln{q_t}}{\partial{T}})_{V,N}\)
- \(S_r=Nk\ln{q_r}+NkT(\frac{d\ln{q_r}}{d{T}})_{V,N}\) others(其他项类似)
- 内能U
- \(U=NkT^2(\frac{\partial\ln{q}}{\partial{T}})_{V,N}=U_t+U_r+U_\nu+U_e+U_n\)
- \(U_t=NkT^2(\frac{\partial\ln{q_t}}{\partial{T}})_{V,N}\) others(其他项类似)
- 亥姆霍斯自由能
- \(A=-NkT-NkT\ln\frac{q}{N}=A_t+A_r+A_\nu+A_e+A_n\)
- \(A_t=-NkT-NkT\ln\frac{q_t}{N}\)
- \(A_r=-NkT\ln{q_r}\) others(其他项类似)
- 吉布斯自由能
- \(G=-NkT\ln\frac{q}{N}=G_t+G_r+G_\nu+G_e+G_n\)
- \(G_t=-NkT\ln\frac{q_t}{N}\)
- \(G_r=-NkT\ln{q_r}\) others(其他项类似)
4. 配分函数
- \(q=\sum\limits_jg_jexp(-\frac{\epsilon_j}{kT})\)
4.1 平动配分函数
-
\(q_t=\sum\limits_tg_texp(-\frac{\epsilon_t}{kT})\)
-
\(q_t=q_xq_yq_z=(\frac{2\pi{m}kT}{h^2})^{\frac{3}{2}}abc=(\frac{2\pi{m}kT}{h^2})^{\frac{3}{2}}V\)
-
\(U_t=\frac{3}{2}NkT\)
-
\(S_t=\frac{5}{2}Nk+Nk\ln[\frac{(2\pi{m}kT)^{\frac{3}{2}}}{h^3}\frac{V}{N}]=\frac{5}{2}Nk+Nk\ln[\frac{(2\pi{M}kT)^{\frac{3}{2}}}{N_A^{\frac{3}{2}}h^3}\frac{kT}{p}]\)
-
\(A_t=-NkT-NkT\ln[\frac{(2\pi{m}kT)^{\frac{3}{2}}}{h^3}\frac{kT}{p}]=-NkT-NkT\ln[\frac{(2\pi{M}kT)^{\frac{3}{2}}}{N_A^{\frac{3}{2}}h^3}\frac{kT}{p}]\)
-
\(G_t=-NkT\ln[\frac{(2\pi{M}kT)^{\frac{3}{2}}}{N_A^{\frac{3}{2}}h^3}\frac{kT}{p}]\)
-
\((\frac{\partial\ln{q}}{\partial{V}})_T=\frac{1}{V}\)
4.2 转动配分函数
- 转动特征温度\(\Theta_r\): \(\Theta_r=\frac{h^2}{8\pi^2Ik}\)(不同旋转轴的转动惯量I不同)
4.2.1 异核双原子分子和不对称线形多原子分子
- \(q_r=\sum\limits_{J=0}^\infty(2J+1)exp(\frac{-J(J+1)\Theta_r}{T})\)
- \(q_r=\frac{T}{\Theta_r}\) \(T\gg{\Theta_r}\)
4.2.2 (同核)双原子分子和(非)对称线性多原子分子
- \(q_r=\frac{T}{\sigma\Theta_r}\) \(T\gg{\Theta_r}\)
- 也适用于异核双原子分子和非对称线性多原子分子,此时\(\sigma=1\)
- 同核双原子分子和对称线性多原子分子,此时\(\sigma=2\)
- 理解对称数\(\sigma\)的简单例子,就是相比于异核双原子,同核双原子转\(\frac{\pi}{4}\)和转\(\frac{5\pi}{4}\)是完全无法区别的,因此微观状态数减半
- \(U_r=NkT\)
- \(A_r=-NkT\ln{\frac{T}{\sigma\Theta_r}}\)
- \(G_r=-NkT\ln{\frac{T}{\sigma\Theta_r}}\)
4.2.3 非线性多原子分子
- \(q_r=\frac{\sqrt\pi}{\sigma}(\frac{T^3}{\Theta_{r,A}\Theta_{r,B}\Theta_{r,C}})^{\frac{1}{2}}\) \(T\gg{\Theta_r}\)
- 在进行转动分解时,相比与线性分子多了一条有效的旋转轴,多一个转动自由度
- \(U_r=\frac{3}{2}NkT\)
- \(S_r=\frac{1}{2}Nk\ln{\frac{\pi{T^3}}{\Theta_{r,A}\Theta_{r,B}\Theta_{r,C}}}-Nk\ln\sigma+\frac{3}{2}Nk\)
4.3 振动配分函数
- 振动特征温度:\(\Theta_\nu= \frac{h\nu}{k}\)
4.3.1 双原子分子(一个振动自由度)
- \(q_\nu=exp(\frac{-h\nu}{2kT})\sum\limits_{v=0}^{\infty}exp(\frac{-vh\nu}{kT})\)
- \(q_\nu=\frac{exp(\frac{-h\nu}{2kT})}{1-exp(\frac{-h\nu}{kT})}\)
- \(\frac{d\ln{q_\nu}}{dT}=\frac{\Theta_\nu}{2T^2}+\frac{\Theta_\nu}{T^2}\frac{1}{exp(\frac{\Theta_\nu}{T})-1}\)
- \(U_\nu=\frac{Nk\Theta_\nu}{2}+\frac{Nk\Theta_\nu}{exp(\frac{\Theta_\nu}{T})-1}\)
- \(S_\nu=-\frac{Nk\Theta_\nu}{2T}-Nk\ln(1-exp(\frac{-\Theta_\nu}{T}))+\frac{Nk\Theta_\nu}{2T}+\frac{Nk\frac{\Theta_\nu}{T}}{exp(\frac{\Theta_\nu}{T})-1}=-Nk\ln(1-exp(\frac{-\Theta_\nu}{T}))+\frac{Nk\frac{\Theta_\nu}{T}}{exp(\frac{\Theta_\nu}{T})-1}\)
- 令\(\epsilon_v^{(0)}=\frac{1}{2}h\nu=0\),以零点振动能为能量零点
- \(q_\nu=\frac{1}{1-exp(\frac{-\Theta_\nu}{T})}\)
- \(\frac{d\ln{q_\nu}}{dT}=\frac{\Theta_\nu}{T^2}\frac{1}{exp(\frac{\Theta_\nu}{T})-1}\)
- \(U_\nu=\frac{Nk\Theta_\nu}{exp(\frac{\Theta_\nu}{T})-1}\)
- \(S_\nu=-Nk\ln(1-exp(\frac{-\Theta_\nu}{T}))+\frac{Nk\frac{\Theta_\nu}{T}}{exp(\frac{\Theta_\nu}{T})-1}\)
4.3.2 多原子分子
- 自由度imax
- 线性分子 \(i_{max}=3n-5\)
- 非线性分子\(i_{max}=3n-6\)
- \(q_\nu=\prod\limits_i\frac{exp(-\frac{\Theta_{\nu,i}}{2T})}{1-exp(-\frac{\Theta_{\nu,i}}{T})}\)
- 令\(\epsilon_v^{(0)}=\frac{1}{2}\sum\limits_ih\nu_i=0\),以零点振动能为能量零点
- \(q_\nu=\prod\limits_i\frac{1}{1-exp(-\frac{\Theta_{\nu,i}}{T})}\)
- \(\frac{d\ln{q_\nu}}{dT}=\sum\limits_i\frac{\Theta_{\nu,i}}{T^2}\frac{1}{exp(\frac{\Theta_{\nu,i}}{T})-1}\)
- \(U_\nu=\sum\limits_i\frac{Nk\Theta_{\nu,i}}{exp(\frac{\Theta_{\nu,i}}{T})-1}\)
- \(S_\nu=\sum\limits_i[-Nk\ln(1-exp(\frac{-\Theta_\nu}{T}))+\frac{Nk\frac{\Theta_\nu}{T}}{exp(\frac{\Theta_\nu}{T})-1}]\)
4.4 电子配分函数
-
\(g_{e,0}\)的取值
-
\(2J+1\) 单原子分子
-
\(2S+1\) 双原子分子,实际等于未成对电子数加1
-
1 大部分其他分子
-
-
\(q_e=g_{e,0}\) 以下公式的前提都是规定电子在基态时能量为0
-
\(U_e=0\)
-
\(S_e=Nk\ln{g_{e,0}}\)
4.5 核配分函数
- \(g_{n,0}=\prod\limits_i(2i+1)\) i为原子的核自旋量子数
- \(q_n=g_{n,0}exp(\frac{-\epsilon_{n,0}}{kT})\)
- \(q_n=g_{n,0}\) 以下公式的前提都是规定核在基态时能量为0
- \(U_n=0\)
- \(S_n=Nk\ln{g_{n,0}}\)
5. 物理量合成
5.1 配分函数 (零点能为0)
- 单原子分子
- \(q=(\frac{2\pi{m}kT}{h^2})^{\frac{3}{2}}V\cdot{g_{e,0}}\cdot{g_{n,0}}\)
- 双原子分子
- \(q=(\frac{2\pi{m}kT}{h^2})^{\frac{3}{2}}V\cdot\frac{T}{\sigma\Theta_r}\cdot\frac{1}{1-exp(-\frac{\Theta_\nu}{T})}\cdot{g_{e,0}}\cdot{g_{n,0}}\)
- 线性多原子分子
- \(q=(\frac{2\pi{m}kT}{h^2})^{\frac{3}{2}}V\cdot\frac{T}{\sigma\Theta_r}\cdot\prod\limits_{i=1}^{3n-5}\frac{1}{1-exp(-\frac{\Theta_{\nu,i}}{T})}\cdot{g_{e,0}}\cdot{g_{n,0}}\)
- 非线性多原子分子
- \(q=(\frac{2\pi{m}kT}{h^2})^{\frac{3}{2}}V\cdot\frac{\sqrt{\pi}}{\sigma}(\frac{T^3}{\Theta_{r,a}\Theta_{r,b}\Theta_{r,c}})^{\frac{1}{2}}\cdot\prod\limits_{i=1}^{3n-6}\frac{1}{1-exp(-\frac{\Theta_{\nu,i}}{T})}\cdot{g_{e,0}}\cdot{g_{n,0}}\)
5.2 热力学能 (零点能为0,理想气体)
- 单原子分子
- \(U=\frac{3}{2}NkT\)
- 双原子分子
- \(U=\frac{5}{2}NkT+Nk\frac{\Theta_{\nu}}{exp(\frac{\Theta_{\nu}}{T})-1}\)
- 线性多原子分子
- \(U=\frac{5}{2}NkT+Nk\sum\limits_{i=1}^{3n-5}\frac{\Theta_{\nu,i}}{exp(\frac{\Theta_{\nu,i}}{T})-1}\)
- 非线性多原子分子
- \(U=3NkT+Nk\sum\limits_{i=1}^{3n-6}\frac{\Theta_{\nu,i}}{exp(\frac{\Theta_{\nu,i}}{T})-1}\)
5.3 摩尔恒容热容 (零点能为0,理想气体)
- 单原子分子
- \(C_{V,m}=\frac{3}{2}R\)
- 双原子分子
- \(C_{V,m}=\frac{5}{2}R+R\{(\frac{\Theta_{\nu}}{T})^2\frac{exp(\frac{\Theta_{\nu}}{T})}{[exp(\frac{\Theta_{\nu}}{T})-1]^2}\}\)
- \(C_{V,m}\approx\frac{5}{2}R\) 忽略振动和电子激发
- 线性多原子分子
- \(C_{V,m}=\frac{5}{2}R+R\sum\limits_{i=1}^{3n-5}\{(\frac{\Theta_{\nu,i}}{T})^2\frac{exp(\frac{\Theta_{\nu,i}}{T})}{[exp(\frac{\Theta_{\nu,i}}{T})-1]^2}\}\)
- 非线性多原子分子
- \(C_{V,m}=3R+R\sum\limits_{i=1}^{3n-6}\{(\frac{\Theta_{\nu,i}}{T})^2\frac{exp(\frac{\Theta_{\nu,i}}{T})}{[exp(\frac{\Theta_{\nu,i}}{T})-1]^2}\}\)
5.4 标准摩尔熵
5.4.1 统计熵(忽略核运动)
- 单原子分子理想气体
- \(S_m^\theta=\frac{5}{2}R+R\ln[(\frac{2\pi{m}kT}{h^2})^{\frac{3}{2}}\frac{V}{N_A}]+R\ln{g_{e,0}}\)
- 双原子分子理想气体
- \(S_m^\theta=\frac{5}{2}R+R\ln[(\frac{2\pi{m}kT}{h^2})^{\frac{3}{2}}\frac{V}{N_A}]+R+R\ln{\frac{T}{\sigma\Theta_{r}}}+R\frac{\frac{\Theta_{\nu}}{T}}{exp(\frac{\Theta_{\nu}}{T})-1}-R\ln[1-exp(-\frac{\Theta_{\nu}}{T})]+R\ln{g_{e,0}}\)
- 线性多原子分子理想气体
- \(S_m^\theta=\frac{5}{2}R+R\ln[(\frac{2\pi{m}kT}{h^2})^{\frac{3}{2}}\frac{V}{N_A}]+R+R\ln{\frac{T}{\sigma\Theta_{r}}}+\\R\sum\limits_{i=1}^{3n-5}\{\frac{\frac{\Theta_{\nu,i}}{T}}{exp(\frac{\Theta_{\nu,i}}{T})-1}-\ln[1-exp(-\frac{\Theta_{\nu,i}}{T})]\}+R\ln{g_{e,0}}\)
- 非线性多原子分子理想气体
- \(S_m^\theta=\frac{5}{2}R+R\ln[(\frac{2\pi{m}kT}{h^2})^{\frac{3}{2}}\frac{V}{N_A}]+\frac{3}{2}R+\frac{1}{2}R\ln{\frac{\pi{T^3}}{\Theta_{r,a}\Theta_{r,b}\Theta_{r,c}}}-R\ln{\sigma}+\\R\sum\limits_{i=1}^{3n-6}\{\frac{\frac{\Theta_{\nu,i}}{T}}{exp(\frac{\Theta_{\nu,i}}{T})-1}-\ln[1-exp(-\frac{\Theta_{\nu,i}}{T})]\}+R\ln{g_{e,0}}\)
5.4.2 量热熵
- \(S_{m,cal}^{\theta}=\int^T_0\frac{C_{p,m}^\theta}{T}d{T}\)
- 统计熵大于量热熵
- 原因: 0K时晶体未必平衡,仍具有无序性,统计熵会考量,但量热熵不会。
- 残余熵\(S_{m,residue}^\theta=S_{m,stat}^\theta-S_{m,cal}^\theta\)
- 例子
- CO晶体(2种取向)
- \(S_{0,m}=Rln2\)
- 冰
- \(S_{0,m}=R\ln{\frac{3}{2}}\)
- 氢
- \(S_{0,m}=\frac{3}{4}R\ln3\)
- \(\frac{3}{4}\)的正氢\(J=1\),简并度为3
- CO晶体(2种取向)

浙公网安备 33010602011771号