一道 whk 题

锐角 \(\triangle ABC\) 中有一点 \(P\),满足 \(\angle BAP=\angle CBP=\angle ACP=\theta\),证明 \(\tan\theta=\dfrac{\tan A\tan B\tan C}{\tan A\tan B+\tan B\tan C+\tan A\tan C}\)


tag:余弦定理。(没错就一个)


由余弦定理得 \(\cos A=\dfrac{b^2+c^2-a^2}{2bc}\),即 \(\dfrac{1}{\tan A}=\dfrac{b^2+c^2-a^2}{2bc\sin A}=\dfrac{b^2+c^2-a^2}{4S_{\triangle ABC}}\)

同理,\(\dfrac{1}{\tan B}=\dfrac{a^2+c^2-b^2}{4S_{\triangle ABC}},\dfrac{1}{\tan C}=\dfrac{a^2+b^2-c^2}{4S_{\triangle ABC}}\)

所以 \(\dfrac{1}{\tan A}+\dfrac{1}{\tan B}+\dfrac{1}{\tan C}=\dfrac{a^2+b^2+c^2}{4S_{\triangle ABC}}\)

由余弦定理得 \(\dfrac{1}{\tan\theta}=\dfrac{a^2+BP^2-CP^2}{4S_{\triangle BCP}}=\dfrac{b^2+CP^2-AP^2}{4S_{\triangle ACP}}=\dfrac{c^2+AP^2-BP^2}{4S_{\triangle ABP}}\)

分子分母分别相加,得 \(\dfrac{1}{\tan\theta}=\dfrac{a^2+b^2+c^2}{4S_{\triangle ABC}}\)

所以 \(\dfrac{1}{\tan\theta}=\dfrac{1}{\tan A}+\dfrac{1}{\tan B}+\dfrac{1}{\tan C}\)

通分取倒数,得 \(\tan\theta=\dfrac{\tan A\tan B\tan C}{\tan A\tan B+\tan B\tan C+\tan A\tan C}\)

posted @ 2025-02-09 22:31  H2ptimize  阅读(27)  评论(0)    收藏  举报