51nod 1739
题意
\[\sum\limits_{i=0}^n {n\choose i}|i^k-(n-i)^k| \]
做法
\(i=am+b\)
\(|i^k-(n-i)^k|=i^k-(n-i)^k\Longrightarrow am+b<n-am-b\Longrightarrow a<\left\lfloor\frac{n}{m}\right\rfloor -a+\frac{n\%m}{m}-\frac{2b}{m}\Longrightarrow a<\left\lfloor\frac{n}{m}\right\rfloor -a\)
\(|i^k-(n-i)^k|=(n\%m-b)^k-b^k\)
然后相反情况:\(i=(\left\lfloor\frac{n}{m}\right\rfloor -a)\cdot m+b\),\(|i^k-(n-i)^k|=b^k-(n\%m-b)^k\)
故\(\left\lfloor\frac{n}{m}\right\rfloor~is~odd\),\(ans=0\)
\(\left\lfloor\frac{n}{m}\right\rfloor~is~even\)
\(Ans={\left\lfloor\frac{n}{m}\right\rfloor\choose \left\lfloor\frac{n}{2\cdot m}\right\rfloor}\sum\limits_{i=0}^{n\%m}{n\%m\choose i}|i^k-(n\%m-i)^k|\)
然后前面那个组合数fft加速转化进制就好了
\(O(m+log_m^n (log_m^n)^2)\),用的ntt+crt,科技树没点够,后面十个点卡不过去了...

浙公网安备 33010602011771号