UOJ46 清华集训2014玄学(线段树)

  注意到操作有结合律,容易想到用一个矩形表示第i次操作对第j个位置的数的影响。那么修改是单行内的区间修改,而查询是单列内的区间查询。这样二维线段树上以列为外层行为内层直接打标记就可以维护。然后就喜闻乐见的被卡常了。当年的标算似乎就是树套树,然而都是可持久化AVL树之类难懂的话。

#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define N 100010
#define mp(x,y) make_pair((x),(y))
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;}
int gcd(int n,int m){return m==0?n:gcd(m,n%m);}
int read()
{
	int x=0,f=1;char c=getchar();
	while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
	while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
	return x*f;
}
typedef pair<int,int> pii;
int n,m,q,t,a[N],root[N<<2],lastans,isonline,cnt;
pii o;
struct data{int l,r;pii x,y;
}tree[N<<8];
pii trans(pii a,pii b){a.first=1ll*a.first*b.first%m;a.second=1ll*a.second*b.first%m;a.second=(a.second+b.second)%m;return a;}
void up(int k){tree[k].x=trans(tree[tree[k].l].x,tree[tree[k].r].x);}
int newnode(){int k=++cnt;tree[k].x=tree[k].y=o;return k;}
void update(int &k,pii p)
{
	if (!k) k=newnode();
	tree[k].x=trans(tree[k].x,p);
	tree[k].y=trans(tree[k].y,p);
}
void down(int k)
{
	update(tree[k].l,tree[k].y);
	update(tree[k].r,tree[k].y);
	tree[k].y=o;
}
void mul(int &k,int l,int r,int x,int y,pii p)
{
	if (!k) k=newnode();
	if (l==x&&r==y)
	{
		update(k,p);
		return;
	}
	if (tree[k].y!=o) down(k);
	int mid=l+r>>1;
	if (y<=mid) mul(tree[k].l,l,mid,x,y,p);
	else if (x>mid) mul(tree[k].r,mid+1,r,x,y,p);
	else mul(tree[k].l,l,mid,x,mid,p),mul(tree[k].r,mid+1,r,mid+1,y,p);
	up(k);
}
void modify(int k,int l,int r,int x,int p,int q,pii y)
{
	mul(root[k],1,n,p,q,y);
	if (l==r) return;
	int mid=l+r>>1;
	if (x<=mid) modify(k<<1,l,mid,x,p,q,y);
	else modify(k<<1|1,mid+1,r,x,p,q,y);
}
pii Q(int &k,int l,int r,int x)
{
	if (!k) return o;
	if (l==r) return tree[k].x;
	if (tree[k].y!=o) down(k);
	int mid=l+r>>1;
	if (x<=mid) return Q(tree[k].l,l,mid,x);
	else return Q(tree[k].r,mid+1,r,x);
}
pii query(int k,int l,int r,int x,int y,int p)
{
	if (l==x&&r==y) return Q(root[k],1,n,p);
	int mid=l+r>>1;
	if (y<=mid) return query(k<<1,l,mid,x,y,p);
	else if (x>mid) return query(k<<1|1,mid+1,r,x,y,p);
	else return trans(query(k<<1,l,mid,x,mid,p),query(k<<1|1,mid+1,r,mid+1,y,p));
}
int main()
{
#ifndef ONLINE_JUDGE
	freopen("ex_input3.txt","r",stdin);
	freopen("a.out","w",stdout);
	const char LL[]="%I64d\n";
#else
	const char LL[]="%lld\n";
#endif
	if (read()&1) isonline=1;o.first=1;tree[0].x=o;
	n=read(),m=read();
	for (int i=1;i<=n;i++) a[i]=read();
	q=read();
	while (q--)
	{
		int op=read();
		if (op==1)
		{
			int l=read(),r=read(),a=read(),b=read();
			if (isonline) l^=lastans,r^=lastans;
			t++;modify(1,1,100000,t,l,r,mp(a,b));
		}
		else
		{
			int l=read(),r=read(),x=read();
			if (isonline) l^=lastans,r^=lastans,x^=lastans;
			pii u=query(1,1,100000,l,r,x);
			printf("%d\n",lastans=(1ll*a[x]*u.first+u.second)%m);
		}
	}
	return 0;
}

 

  考虑小常数做法。注意到x次修改至多会将序列划分成2x+1个不同的段,那么用线段树对修改进行维护,节点内记录这些修改将序列划分成的段,显然总段数是O(nlogn)的(nq同阶)。然而无法在每次修改时都对所有影响到的节点进行修改,因为单个节点修改并非O(1)或O(log)。不过可以在一个节点的修改全部出现后,通过归并排序两个子节点来得到该节点信息。于是这样修改总复杂度就是O(nlogn)。查询时在线段树上区间查询再在节点上二分即可。同样是两个log但常数显然小了很多。

#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define N 100010
#define mp(x,y) make_pair((x),(y))
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;}
int gcd(int n,int m){return m==0?n:gcd(m,n%m);}
int read()
{
	int x=0,f=1;char c=getchar();
	while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
	while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
	return x*f;
}
typedef pair<int,int> pii;
int n,m,q,t,a[N],lastans,isonline,L[N<<2],R[N<<2];
pii o;
pii trans(pii a,pii b){a.first=1ll*a.first*b.first%m;a.second=1ll*a.second*b.first%m;a.second=(1ll*a.second+b.second)%m;return a;}
struct seg{int l,r;pii x;};
vector<seg> tree[N<<2];
vector<int> id[N];
void build(int k,int l,int r)
{
	id[r].push_back(k);L[k]=l,R[k]=r;
	tree[k].push_back((seg){1,n,o});
	if (l==r) return;
	int mid=l+r>>1;
	build(k<<1,l,mid),build(k<<1|1,mid+1,r);
}
vector<seg> merge(vector<seg> a,vector<seg> b)
{
	vector<seg> c;
	for (int i=0,j=0;i<a.size()||j<b.size();)
	if (a[i].r==b[j].r) c.push_back((seg){max(a[i].l,b[j].l),a[i].r,trans(a[i].x,b[j].x)}),i++,j++;
	else if (a[i].r<b[j].r) c.push_back((seg){max(a[i].l,b[j].l),a[i].r,trans(a[i].x,b[j].x)}),i++;
	else c.push_back((seg){max(a[i].l,b[j].l),b[j].r,trans(a[i].x,b[j].x)}),j++;
	return c;
}
pii query(int k,int l,int r,int x)
{
	if (L[k]==l&&R[k]==r)
	{
		int l=0,r=tree[k].size(),p=0;
		while (l<=r)
		{
			int mid=l+r>>1;
			if (x<=tree[k][mid].r) p=mid,r=mid-1;
			else l=mid+1;
		}
		return tree[k][p].x;
	}
	int mid=L[k]+R[k]>>1;
	if (r<=mid) return query(k<<1,l,r,x);
	else if (l>mid) return query(k<<1|1,l,r,x);
	else return trans(query(k<<1,l,mid,x),query(k<<1|1,mid+1,r,x));
}
int main()
{
#ifndef ONLINE_JUDGE
	freopen("a.in","r",stdin);
	freopen("b.out","w",stdout);
	const char LL[]="%I64d\n";
#else
	const char LL[]="%lld\n";
#endif
	if (read()&1) isonline=1;o.first=1;
	n=read(),m=read();
	for (int i=1;i<=n;i++) a[i]=read();
	q=read();build(1,1,100000);for (int i=1;i<=100000;i++) reverse(id[i].begin(),id[i].end());
	while (q--)
	{
		int op=read();
		if (op==1)
		{
			int l=read(),r=read(),a=read(),b=read();vector<seg>tmp;
			if (isonline) l^=lastans,r^=lastans;
			if (l>1) tmp.push_back((seg){1,l-1,o});
			tmp.push_back((seg){l,r,mp(a,b)});
			if (r<n) tmp.push_back((seg){r+1,n,o});
			t++;
			for (int k:id[t])
			if (L[k]==R[k]) tree[k]=merge(tree[k],tmp);
			else tree[k]=merge(tree[k<<1],tree[k<<1|1]);
		}
		else
		{
			int l=read(),r=read(),x=read();
			if (isonline) l^=lastans,r^=lastans,x^=lastans;
			pii u=query(1,l,r,x);
			printf("%d\n",lastans=(1ll*a[x]*u.first+u.second)%m);
		}
	}
	return 0;
} 

  

 

posted @ 2019-06-10 23:22  Gloid  阅读(...)  评论(...编辑  收藏