BZOJ2595 WC2008游览计划(斯坦纳树)

  斯坦纳树板子题。

  考虑状压dp,设f[i][j][S]表示当前在点(i,j)考虑转移,其所在的联通块包含的关键点集(至少)为S的答案。

  转移时首先枚举子集,有f[i][j][S]=min{f[i][j][x]+f[i][j][y]-a[i][j]} (x&y=0,x|y=S)。

  然后考虑从点(i,j)从哪拓展而来,有f[i][j][S]=min{f[x][y][S]}+a[i][j],其中(x,y)为(i,j)的相邻点,使用spfa转移。

  这里第二种转移仅在相同关键点集下进行,因为由更小点集转移而来的情况已在第一种转移中被考虑。

  对于输出方案,记录如何转移而来即可。

  其实并没有搞懂。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 12
int gcd(int n,int m){return m==0?n:gcd(m,n%m);}
int read()
{
    int x=0,f=1;char c=getchar();
    while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
    while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
    return x*f;
}
int n,m,s,a[N][N],id[N][N],f[N][N][1<<N],from[N][N][1<<N][2],q[N*N*N*N][2];
int wx[4]={1,0,0,-1},wy[4]={0,1,-1,0};
bool flag[N][N];
char b[N][N];
void inc(int &x){x++;if (x>n*m+1) x-=n*m+1;}
void spfa(int k)
{
    int head=0,tail=0;
    for (int i=1;i<=n;i++)
        for (int j=1;j<=m;j++)
        tail++,q[tail][0]=i,q[tail][1]=j,flag[i][j]=1;
    do
    {
        inc(head);int x=q[head][0],y=q[head][1];flag[x][y]=0;
        for (int i=0;i<4;i++)
        {
            int u=x+wx[i],v=y+wy[i];
            if (u&&u<=n&&v&&v<=m&&f[x][y][k]+a[u][v]<f[u][v][k])
            {    
                f[u][v][k]=f[x][y][k]+a[u][v];
                from[u][v][k][0]=x,from[u][v][k][1]=y;
                if (!flag[u][v]) flag[u][v]=1,inc(tail),q[tail][0]=u,q[tail][1]=v;
            }
        }
    }while (head!=tail);
}
void getans(int x,int y,int k)
{
    b[x][y]='o';
    while (from[x][y][k][0]>0)
    {
        int u=from[x][y][k][0],v=from[x][y][k][1];
        b[x=u][y=v]='o';
    }
    if (from[x][y][k][0]<0) getans(x,y,-from[x][y][k][0]),getans(x,y,-from[x][y][k][1]);
}
int main()
{
#ifndef ONLINE_JUDGE
    freopen("bzoj2595.in","r",stdin);
    freopen("bzoj2595.out","w",stdout);
#endif
    n=read(),m=read();
    for (int i=1;i<=n;i++)
        for (int j=1;j<=m;j++)
        {
            a[i][j]=read(),s+=(a[i][j]==0);
            if (!a[i][j]) id[i][j]=s;
        }
    memset(f,42,sizeof(f));
    for (int i=1;i<=n;i++)
        for (int j=1;j<=m;j++)
        {
            f[i][j][0]=a[i][j];
            if (id[i][j]) f[i][j][1<<id[i][j]-1]=a[i][j];
        }
    for (int k=1;k<(1<<s);k++)
    {
        for (int i=1;i<=n;i++)
            for (int j=1;j<=m;j++)
                for (int x=k;x>=(k^x);x=x-1&k)
                if (f[i][j][x]+f[i][j][k^x]-a[i][j]<f[i][j][k])
                {
                    f[i][j][k]=f[i][j][x]+f[i][j][k^x]-a[i][j];
                    from[i][j][k][0]=-x,from[i][j][k][1]=-(k^x);
                }
        spfa(k);
    }
    int ans=100000000;
    for (int i=1;i<=n;i++)
        for (int j=1;j<=m;j++)
        ans=min(ans,f[i][j][(1<<s)-1]);
    cout<<ans<<endl;
    for (int i=1;i<=n;i++)
        for (int j=1;j<=m;j++)
        b[i][j]='_';
    for (int i=1;i<=n;i++)
        for (int j=1;j<=m;j++)
        if (f[i][j][(1<<s)-1]==ans)
        {
            getans(i,j,(1<<s)-1);
            for (int i=1;i<=n;i++)
                for (int j=1;j<=m;j++)
                if (!a[i][j]) b[i][j]='x';
            for (int i=1;i<=n;i++)
            {
                for (int j=1;j<=m;j++)
                putchar(b[i][j]);
                cout<<endl;
            }
            return 0;
        }
}

 

posted @ 2019-01-11 20:05  Gloid  阅读(143)  评论(0编辑  收藏  举报