[LeetCode]115. Distinct Subsequences

115. Distinct Subsequences

动态规划

思路:假定dp[i][j] 表示字符串S[0,i]能够匹配字符串T[0,j]的个数。如果当前下标对应的值不相等,那么我们可以将当前的字符进行抛弃,取前一位的匹配的结果;相反,如果值是相等的,那么我们可以选择保留当前字符或者不保留,因为这两个结果并不是排斥的,所以将这两个结果进行相加。

状态转移方程为:

dp[i][j] = 0 (if j == 0)
dp[i][j] = 1 (if i == 1)
dp[i][j] = dp[i-1][j-1] + dp[i-1][j] (if s[i] == t[j])
dp[i][j] = dp[i-1][j] (if s[i] != t[j])

其状态转移方程为:

class Solution(object):
    def numDistinct(self, s, t):
        """
        :type s: str
        :type t: str
        :rtype: int
        """
        dp = [[0 for _ in range(len(t)+1)] for _ in range(len(s)+1)]
        dp[0][0] = 1
        for i in range(1, len(t) + 1):
            dp[0][i] = 0
        for i in range(1, len(s) + 1):
            dp[i][0] = 1
        for i in range(1, len(s) + 1):
            for j in range(1, len(t)+1):
                if s[i-1] == t[j-1]:
                    dp[i][j] = dp[i-1][j-1] + dp[i-1][j]
                else:
                    dp[i][j] = dp[i-1][j]
        return dp[len(s)][len(t)]

还可以进一步减小他的空间复杂度,变成O(n),其原理还是一样的,只不过是进行了置换而已。

class Solution(object):
    def numDistinct(self, s, t):
        """
        :type s: str
        :type t: str
        :rtype: int
        """
        state = [1]+[0]*len(t)
        for c in s:
            new = state[:]
            for i,k in enumerate(t):
                if k==c: new[i+1] += state[i]
            state = new
        return state[-1]
posted @ 2017-08-26 03:57  banananana  阅读(148)  评论(0)    收藏  举报