[LeetCode]115. Distinct Subsequences
115. Distinct Subsequences
动态规划
dp[i][j] = 0 (if j == 0)
dp[i][j] = 1 (if i == 1)
dp[i][j] = dp[i-1][j-1] + dp[i-1][j] (if s[i] == t[j])
dp[i][j] = dp[i-1][j] (if s[i] != t[j])class Solution(object):
    def numDistinct(self, s, t):
        """
        :type s: str
        :type t: str
        :rtype: int
        """
        dp = [[0 for _ in range(len(t)+1)] for _ in range(len(s)+1)]
        dp[0][0] = 1
        for i in range(1, len(t) + 1):
            dp[0][i] = 0
        for i in range(1, len(s) + 1):
            dp[i][0] = 1
        for i in range(1, len(s) + 1):
            for j in range(1, len(t)+1):
                if s[i-1] == t[j-1]:
                    dp[i][j] = dp[i-1][j-1] + dp[i-1][j]
                else:
                    dp[i][j] = dp[i-1][j]
        return dp[len(s)][len(t)]
class Solution(object):
    def numDistinct(self, s, t):
        """
        :type s: str
        :type t: str
        :rtype: int
        """
        state = [1]+[0]*len(t)
        for c in s:
            new = state[:]
            for i,k in enumerate(t):
                if k==c: new[i+1] += state[i]
            state = new
        return state[-1] 
关注公众号:数据结构与算法那些事儿,每天一篇数据结构与算法
 
                    
                
 
                
            
         浙公网安备 33010602011771号
浙公网安备 33010602011771号