[LeetCode]115. Distinct Subsequences
115. Distinct Subsequences
动态规划
dp[i][j] = 0 (if j == 0)
dp[i][j] = 1 (if i == 1)
dp[i][j] = dp[i-1][j-1] + dp[i-1][j] (if s[i] == t[j])
dp[i][j] = dp[i-1][j] (if s[i] != t[j])class Solution(object):
def numDistinct(self, s, t):
"""
:type s: str
:type t: str
:rtype: int
"""
dp = [[0 for _ in range(len(t)+1)] for _ in range(len(s)+1)]
dp[0][0] = 1
for i in range(1, len(t) + 1):
dp[0][i] = 0
for i in range(1, len(s) + 1):
dp[i][0] = 1
for i in range(1, len(s) + 1):
for j in range(1, len(t)+1):
if s[i-1] == t[j-1]:
dp[i][j] = dp[i-1][j-1] + dp[i-1][j]
else:
dp[i][j] = dp[i-1][j]
return dp[len(s)][len(t)]
class Solution(object):
def numDistinct(self, s, t):
"""
:type s: str
:type t: str
:rtype: int
"""
state = [1]+[0]*len(t)
for c in s:
new = state[:]
for i,k in enumerate(t):
if k==c: new[i+1] += state[i]
state = new
return state[-1]
关注公众号:数据结构与算法那些事儿,每天一篇数据结构与算法

浙公网安备 33010602011771号