# [算法模板]FFT-快速傅里叶变换

## FFT

rvalue

LSJ-FFT与NTT基础

### 代码

FFT递归：

#include <cstdio>
#include <cmath>
using namespace std;
const int maxn=2e6+10;
const double pi=acos(-1.0);
struct comp{
double a,b;
};
comp operator +(comp a,comp b){return (comp){a.a+b.a,a.b+b.b};}
comp operator -(comp a,comp b){return (comp){a.a-b.a,a.b-b.b};}
comp operator *(comp a,comp b){return (comp){a.a*b.a-a.b*b.b,a.a*b.b+a.b*b.a};}
void fft(int l,comp *a,int f)
{
if(l==1) return;
comp a1[l>>1],a2[l>>1];
for(int i=0;i<l;i+=2)
{
a1[i>>1]=a[i];
a2[i>>1]=a[i+1];
}
fft(l>>1,a1,f); fft(l>>1,a2,f);
comp wn=(comp){cos(2*pi/l),f*sin(2*pi/l)},w=(comp){1,0};
for(int i=0;i<(l>>1);i++,w=w*wn)
{
a[i]=a1[i]+w*a2[i];
a[i+(l>>1)]=a1[i]-w*a2[i];
}
}
comp a[maxn],b[maxn];
int main ()
{
int n,m; scanf("%d%d",&n,&m);
for(int i=0;i<=n;i++) scanf("%lf",&a[i].a);
for(int i=0;i<=m;i++) scanf("%lf",&b[i].a);
int l=1; while(l<=n+m) l<<=1;
fft(l,a,1); fft(l,b,1);
for(int i=0;i<l;i++) a[i]=a[i]*b[i];
fft(l,a,-1);
for(int i=0;i<=n+m;i++) printf("%d ",(int)(a[i].a/l+0.5));
return 0;
}


FFT迭代：

#include <cstdio>
#include <cmath>
#include <iostream>
using namespace std;
const int maxn=4*1e6+10;
const double pi=acos(-1.0);
struct comp{
double a,b;
};
comp operator +(comp a,comp b){return (comp){a.a+b.a,a.b+b.b};}
comp operator -(comp a,comp b){return (comp){a.a-b.a,a.b-b.b};}
comp operator *(comp a,comp b){return (comp){a.a*b.a-a.b*b.b,a.a*b.b+a.b*b.a};}
int rev[maxn],rp;
void get_rev(int l)//l为位数,rev[i]代表i的二进制表示颠倒（二进制位有l位，不足补0）
{
for(int i=1;i<(1<<l);i++)
rev[i]=(rev[i>>1]>>1)|((1&i)<<l-1);
}
void fft(int len,comp *a,int f)
{
for(int i=1;i<len;i++)
if(rev[i]>i) swap(a[rev[i]],a[i]);
for(int l=2;l<=len;l<<=1)//区间长度
{
comp wn=(comp){cos(2*pi/l),f*sin(2*pi/l)};
for(int i=0;i+l<=len;i+=l)
{
comp w=(comp){1,0};
for(int k=i;k<i+(l>>1);k++,w=w*wn)
{
comp t=w*a[k+(l>>1)],tmp=a[k];
a[k]=tmp+t;
a[k+(l>>1)]=tmp-t;
}
}
}
}
//a[i]表示当x=单位根的i次方时y的值
comp a[maxn],b[maxn];
int main ()
{
int n,m; scanf("%d%d",&n,&m);
for(int i=0;i<=n;i++) scanf("%lf",&a[i].a);
for(int i=0;i<=m;i++) scanf("%lf",&b[i].a);
int l=1,cnt=0; while(l<=n+m) l<<=1,cnt++;
get_rev(cnt);
fft(l,a,1); fft(l,b,1);//l是多项式项数
for(int i=0;i<l;i++) a[i]=a[i]*b[i];
fft(l,a,-1);
for(int i=0;i<=n+m;i++) printf("%d ",(int)(a[i].a/l+0.5));
return 0;
}


## NTT

### 代码

for(int i=2;i<(1<<l);i<<=1) {//枚举单位根周期长度(即w_n的n)
int w0=Pow(3,(P-1)/i),w1=Pow(3,P-1-(P-1)/i);
wn[0][i>>1]=wn[1][i>>1]=1;//wn[f][i],i的最高位代表是几次单位根，其他位代表是第几个。这里求的是i的单位根，因为前一半i单位根等于i/2的单位根所以是存储在i/2的位置.(推式子的时候推过,长度为len时代入单位根周期为len/2)
for(int j=1;j<(i>>1);++j)//w_i单位根的j次方(因为折半了所以只用求一半)
wn[0][(i>>1)+j]=wn[0][(i>>1)+j-1]*(ll)w0%P,
wn[1][(i>>1)+j]=wn[1][(i>>1)+j-1]*(ll)w1%P;
}


[模板]分治FFT

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
const int mod=998244353;
const int maxn=3e5+10;
typedef long long ll;
ll a[maxn],b[maxn],f[maxn],g[maxn],wn[2][maxn];
int n,rev[maxn];
int ksm(int num,int t){
int res=1;
for(;t;t>>=1,num=1ll*num*num%mod){
if(t&1)res=1ll*res*num%mod;
}
return res;
}
void get_rev(int len){for(int i=1;i<(1<<len);i++)rev[i]=(rev[i>>1]>>1)|((i&1)<<(len-1));}
void get_wn(int len){
for(int i=2;i<=(1<<len);i<<=1){
ll w1=ksm(3,(mod-1)/i),w0=ksm(3,mod-1-(mod-1)/i);
wn[0][i>>1]=wn[1][i>>1]=1;
for(int j=1;j<(i>>1);j++){
wn[0][j+(i>>1)]=wn[0][j+(i>>1)-1]*w0%mod;
wn[1][j+(i>>1)]=wn[1][j+(i>>1)-1]*w1%mod;
}
}
}
void NTT(int len,ll *c,int f){
for(int i=0;i<len;i++)if(rev[i]>i)swap(c[i],c[rev[i]]);
for(int l=2;l<=len;l<<=1){
for(int i=0;i+l<=len;i+=l){
for(int k=i;k<i+(l>>1);k++){
ll tmp1=c[k],tmp2=wn[f][k+(l>>1)-i]*c[k+(l>>1)];
c[k]=(tmp1+tmp2)%mod;
c[k+(l>>1)]=(tmp1-tmp2+mod)%mod;
}
}
}
}
void cdq(int l,int r){
if(l==r)return;
int mid=(l+r)>>1;
cdq(l,mid);
int cnt=0,len=1;while(len<=(r-l-1))len<<=1,cnt++;
for(int i=0;i<len;i++)a[i]=b[i]=0;
for(int i=0;i<=mid-l;i++)a[i]=f[i+l];
for(int i=0;i<=r-l-1;i++)b[i]=g[i+1];
//	memset(rev,0,sizeof(rev));
get_rev(cnt);
NTT(len,a,1);NTT(len,b,1);
for(int i=0;i<len;i++)a[i]=a[i]*b[i]%mod;
NTT(len,a,0);
ll inv=ksm(len,mod-2);
for(int i=0;i<len;i++)a[i]=a[i]*inv%mod;
for(int i=mid+1;i<=r;i++)f[i]+=a[i-l-1],f[i]%=mod;
cdq(mid+1,r);
}
int main(){
f[0]=1;
scanf("%d",&n);get_wn(18);
for(int i=1;i<n;i++)scanf("%lld",&g[i]);
cdq(0,n-1);
for(int i=0;i<n;i++)printf("%lld ",(f[i]%mod+mod)%mod);
return 0;
}



posted @ 2019-12-13 20:11  GavinZheng  阅读(423)  评论(3编辑  收藏  举报