算法刷题 Day 55 | ● 392.判断子序列 ● 115.不同的子序列
392.判断子序列
这道题目算是 编辑距离问题 的入门题目(毕竟这里只是涉及到减法),慢慢的,后面就要来解决真正的 编辑距离问题了
https://programmercarl.com/0392.%E5%88%A4%E6%96%AD%E5%AD%90%E5%BA%8F%E5%88%97.html
Tips:先求最大公共子序列,再比较大小。
我的题解:
class Solution {
public:
bool isSubsequence(string s, string t) {
if(s.size() > t.size()) return false;
vector<vector<int>> dp(s.size()+1,vector<int>(t.size()+1,0));
int result = 0;
for(int i = 1; i<=s.size();i++){
for(int j = 1; j<=t.size();j++){
if(s[i-1] == t[j-1]){
dp[i][j] = dp[i-1][j-1] + 1;
}
else{
// 这里只可能是t字符串删除元素
dp[i][j] = dp[i][j-1];
//dp[i][j] = max(dp[i][j-1],dp[i-1][j]);
}
result = max(result, dp[i][j]);
// if(result == s.size()) return true;
}
}
// 其实可以移到循环里面去
if(result == s.size()) return true;
else return false;
}
};
115.不同的子序列
但相对于刚讲过 392.判断子序列,本题 就有难度了 ,感受一下本题和 392.判断子序列 的区别。
https://programmercarl.com/0115.%E4%B8%8D%E5%90%8C%E7%9A%84%E5%AD%90%E5%BA%8F%E5%88%97.html
Tips:这道题很难,需要再多看几遍。同时定义数组的时候,32位会溢出,需要定义为uint64_t
动规五部曲分析如下:
- 确定dp数组(dp table)以及下标的含义
dp[i][j]:以i-1为结尾的s子序列中出现以j-1为结尾的t的个数为dp[i][j]。
为什么i-1,j-1 这么定义我在 718. 最长重复子数组 (opens new window)中做了详细的讲解。
- 确定递推公式
这一类问题,基本是要分析两种情况
- s[i - 1] 与 t[j - 1]相等
- s[i - 1] 与 t[j - 1] 不相等
当s[i - 1] 与 t[j - 1]相等时,dp[i][j]可以有两部分组成。
一部分是用s[i - 1]来匹配,那么个数为dp[i - 1][j - 1]。即不需要考虑当前s子串和t子串的最后一位字母,所以只需要 dp[i-1][j-1]。
一部分是不用s[i - 1]来匹配,个数为dp[i - 1][j]。
这里可能有录友不明白了,为什么还要考虑 不用s[i - 1]来匹配,都相同了指定要匹配啊。
例如: s:bagg 和 t:bag ,s[3] 和 t[2]是相同的,但是字符串s也可以不用s[3]来匹配,即用s[0]s[1]s[2]组成的bag。
当然也可以用s[3]来匹配,即:s[0]s[1]s[3]组成的bag。
所以当s[i - 1] 与 t[j - 1]相等时,dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];
当s[i - 1] 与 t[j - 1]不相等时,dp[i][j]只有一部分组成,不用s[i - 1]来匹配(就是模拟在s中删除这个元素),即:dp[i - 1][j]
所以递推公式为:dp[i][j] = dp[i - 1][j];
这里可能有录友还疑惑,为什么只考虑 “不用s[i - 1]来匹配” 这种情况, 不考虑 “不用t[j - 1]来匹配” 的情况呢。
这里大家要明确,我们求的是 s 中有多少个 t,而不是 求t中有多少个s,所以只考虑 s中删除元素的情况,即 不用s[i - 1]来匹配 的情况。
- dp数组如何初始化
从递推公式dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j]; 和 dp[i][j] = dp[i - 1][j]; 中可以看出dp[i][j] 是从上方和左上方推导而来,如图:,那么 dp[i][0] 和dp[0][j]是一定要初始化的。

每次当初始化的时候,都要回顾一下dp[i][j]的定义,不要凭感觉初始化。
dp[i][0]表示什么呢?
dp[i][0] 表示:以i-1为结尾的s可以随便删除元素,出现空字符串的个数。
那么dp[i][0]一定都是1,因为也就是把以i-1为结尾的s,删除所有元素,出现空字符串的个数就是1。
再来看dp[0][j],dp[0][j]:空字符串s可以随便删除元素,出现以j-1为结尾的字符串t的个数。
那么dp[0][j]一定都是0,s如论如何也变成不了t。
最后就要看一个特殊位置了,即:dp[0][0] 应该是多少。
dp[0][0]应该是1,空字符串s,可以删除0个元素,变成空字符串t。
初始化分析完毕,代码如下:
vector<vector<long long>> dp(s.size() + 1, vector<long long>(t.size() + 1));
for (int i = 0; i <= s.size(); i++) dp[i][0] = 1;
for (int j = 1; j <= t.size(); j++) dp[0][j] = 0; // 其实这行代码可以和dp数组初始化的时候放在一起,但我为了凸显初始化的逻辑,所以还是加上了。
- 确定遍历顺序
从递推公式dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j]; 和 dp[i][j] = dp[i - 1][j]; 中可以看出dp[i][j]都是根据左上方和正上方推出来的。

所以遍历的时候一定是从上到下,从左到右,这样保证dp[i][j]可以根据之前计算出来的数值进行计算。
代码如下:
for (int i = 1; i <= s.size(); i++) {
for (int j = 1; j <= t.size(); j++) {
if (s[i - 1] == t[j - 1]) {
dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];
} else {
dp[i][j] = dp[i - 1][j];
}
}
}
- 举例推导dp数组
以s:"baegg",t:"bag"为例,推导dp数组状态如下:

如果写出来的代码怎么改都通过不了,不妨把dp数组打印出来,看一看,是不是这样的。
我的题解:
class Solution {
public:
int numDistinct(string s, string t) {
// dp[i][j]:以i-1为结尾的s子序列中出现以j-1为结尾的t的个数为dp[i][j]。
vector<vector<uint64_t>> dp(s.size()+1,vector<uint64_t>(t.size()+1,0));
// 初始化
for(int i = 0; i<s.size()+1;i++){
dp[i][0] = 1;
}
for(int i = 1; i<=s.size(); i++){
for(int j = 1; j<=t.size(); j++){
if(s[i-1] == t[j-1]){
dp[i][j] = dp[i-1][j-1] + dp[i-1][j];
}
else{
dp[i][j] = dp[i-1][j];
}
}
}
return dp[s.size()][t.size()];
}
};

浙公网安备 33010602011771号