Python数据分析-数据分组统计
1. 分组统计groupby()函数
通过使用df.groupby(),可以对数据进行分组统计,语法如下:
DataFrame.groupby(by=None, axis=_NoDefault.no_default, level=None, as_index=True, sort=True, group_keys=True, observed=_NoDefault.no_default, dropna=True)
groupby操作涉及分割对象、应用函数和组合结果的组合,这可以用于对大量数据进行分组,并对这些组进行计算操作。
参数说明:
- by:mapping, function, label, pd.Grouper or list of such
Used to determine the groups for the groupby. If by is a function, it’s called on each value of the object’s index. If a dict or Series is passed, the Series or dict VALUES will be used to determine the groups (the Series’ values are first aligned; see .align()method). If a list or ndarray of length equal to the selected axis is passed, the values are used as-is to determine the groups. A label or list of labels may be passed to group by the columns in self. Notice that a tuple is interpreted as a (single) key.
- axis:{0 or ‘index’, 1 or ‘columns’}, default 0
Split along rows (0) or columns (1). For Series this parameter is unused and defaults to 0.
- level:int, level name, or sequence of such, default None
If the axis is a MultiIndex (hierarchical), group by a particular level or levels. Do not specify both by and level.
- as_index:bool, default True
Return object with group labels as the index. Only relevant for DataFrame input. as_index=False is effectively “SQL-style” grouped output. This argument has no effect on filtrations, such as head(), tail(), nth()and in transformations.
- sort:bool, default True
Sort group keys. Get better performance by turning this off. Note this does not influence the order of observations within each group. Groupby preserves the order of rows within each group. If False, the groups will appear in the same order as they did in the original DataFrame. This argument has no effect on filtrations, such as head(), tail(), nth() and in transformations.
- group_keys:bool, default True
When calling apply and the by argument produces a like-indexed (i.e. a transform) result, add group keys to index to identify pieces. By default group keys are not included when the result’s index (and column) labels match the inputs, and are included otherwise.
- observed:bool, default False
This only applies if any of the groupers are Categoricals. If True: only show observed values for categorical groupers. If False: show all values for categorical groupers.
- dropna:bool, default True
If True, and if group keys contain NA values, NA values together with row/column will be dropped. If False, NA values will also be treated as the key in groups.
代码示例:
1 df = pd.DataFrame({'Animal': ['Falcon', 'Falcon', 2 'Parrot', 'Parrot'], 3 'Max Speed': [380., 370., 24., 26.]}) 4 print(df) 5 6 ### 结果 7 # Animal Max Speed 8 # 0 Falcon 380.0 9 # 1 Falcon 370.0 10 # 2 Parrot 24.0 11 # 3 Parrot 26.0
1 df1 = df.groupby(['Animal']).mean() 2 print(df1) 3 4 ### 结果 5 # Max Speed 6 # Animal 7 # Falcon 375.0 8 # Parrot 25.0
我们可以使用level参数按层次索引的不同级别分组
1 arrays = [['Falcon', 'Falcon', 'Parrot', 'Parrot'], 2 ['Captive', 'Wild', 'Captive', 'Wild']] 3 index = pd.MultiIndex.from_arrays(arrays, names=('Animal', 'Type')) 4 df = pd.DataFrame({'Max Speed': [390., 350., 30., 20.]}, 5 index=index) 6 print(df) 7 8 ### 结果 9 # Max Speed 10 # Animal Type 11 # Falcon Captive 390.0 12 # Wild 350.0 13 # Parrot Captive 30.0 14 # Wild 20.0
1 df1 = df.groupby(level=0).mean() 2 print(df1) 3 4 ### 结果 5 # Max Speed 6 # Animal 7 # Falcon 370.0 8 # Parrot 25.0 9 10 df1 = df.groupby(level="Type").mean() 11 print(df1) 12 13 ### 结果 14 # Max Speed 15 # Type 16 # Captive 210.0 17 # Wild 185.0
我们也可以通过设置dropna参数来选择是否将NA包含在组键中,默认设置为True
1 list1 = [[1, 2, 3], [1, None, 4], [2, 1, 3], [1, 2, 2]] 2 df = pd.DataFrame(list1, columns=["a", "b", "c"]) 3 print(df) 4 5 ### 结果 6 # a b c 7 # 0 1 2.0 3 8 # 1 1 NaN 4 9 # 2 2 1.0 3 10 # 3 1 2.0 2
1 df1 = df.groupby(by=["b"]).sum() 2 print(df1) 3 4 ### 结果 5 # a c 6 # b 7 # 1.0 2 3 8 # 2.0 2 5
1 df1 = df.groupby(by=["b"], dropna=False).sum() 2 print(df1) 3 4 ### 结果 5 # a c 6 # b 7 # 1.0 2 3 8 # 2.0 2 5 9 # NaN 1 4
当使用.apply()时,使用group_keys来包含或排除组键。参数group_keys默认为True(包含)。
1 df = pd.DataFrame({'Animal': ['Falcon', 'Falcon', 2 'Parrot', 'Parrot'], 3 'Max Speed': [380., 370., 24., 26.]}) 4 print(df) 5 6 ### 结果 7 # Animal Max Speed 8 # 0 Falcon 380.0 9 # 1 Falcon 370.0 10 # 2 Parrot 24.0 11 # 3 Parrot 26.0
1 df1 = df.groupby("Animal", group_keys=True)[['Max Speed']].apply(lambda x: x) 2 print(df1) 3 4 ### 结果 5 # Max Speed 6 # Animal 7 # Falcon 0 380.0 8 # 1 370.0 9 # Parrot 2 24.0 10 # 3 26.0
1 df1 = df.groupby("Animal", group_keys=False)[['Max Speed']].apply(lambda x: x) 2 print(df1) 3 4 ### 结果 5 # Max Speed 6 # 0 380.0 7 # 1 370.0 8 # 2 24.0 9 # 3 26.0
时间:2024年2月6日

Python数据分析-数据分组统计
浙公网安备 33010602011771号