Luogu3803 【模板】多项式乘法(FFT)
https://www.luogu.com.cn/problem/P3803
\(FFT/NTT\)
\(FFT:\)
注意,小数操作运算太慢,不要取\(.0lf\),否则\(TLE\),正确的方法是直接转换为\(int\)(当然要四舍五入)
#include<cstdio>
#include<iostream>
#include<cstring>
#include<cmath>
#define N 10000005
using namespace std;
double Pi=acos(-1.0);
struct virt
{
double x,y;
virt operator + (virt b)
{
return (virt){x+b.x,y+b.y};
}
virt operator - (virt b)
{
return (virt){x-b.x,y-b.y};
}
virt operator * (virt b)
{
return (virt){x*b.x-y*b.y,x*b.y+y*b.x};
}
}a[N],b[N];
int n,m,q,l,s,r[N];
void FFT(virt *a,double t)
{
for (int i=0;i<s;i++)
if (i<r[i])
swap(a[i],a[r[i]]);
for (int mid=1;mid<s;mid <<=1)
{
virt wn=(virt){cos(Pi/mid),t*sin(Pi/mid)};
for (int j=0;j<s;j+=(mid << 1))
{
virt w=(virt){1.0,0.0};
for (int k=0;k<mid;k++,w=w*wn)
{
virt x=a[j+k],y=w*a[j+k+mid];
a[j+k]=x+y;
a[j+k+mid]=x-y;
}
}
}
}
int main()
{
scanf("%d%d",&n,&m);
for (int i=0;i<=n;i++)
scanf("%lf",&a[i].x);
for (int i=0;i<=m;i++)
scanf("%lf",&b[i].x);
l=0;
s=1;
while (s<=n+m)
{
l++;
s <<=1;
}
for (int i=0;i<s;i++)
r[i]=(r[i >> 1] >> 1)|((i&1) << (l-1));
FFT(a,1.0);
FFT(b,1.0);
for (int i=0;i<=s;i++)
a[i]=a[i]*b[i];
FFT(a,-1.0);
for (int i=0;i<=n+m;i++)
printf("%d ",(int)(a[i].x/(double)s+0.5));
putchar('\n');
return 0;
}
\(NTT:\)
#include<iostream>
#include<cstdio>
#include<algorithm>
#define p 998244353
#define G 3
#define N 4000005
#define ll long long
using namespace std;
int Gi;
int n,m,s,l,r[N],a[N],b[N];
inline int ksm(int x,int y)
{
int ans=1;
while (y)
{
if (y & 1)
ans=(ll)ans*x%p;
x=(ll)x*x%p;
y >>=1;
}
return ans;
}
inline void NTT(int *a,int t)
{
for (int i=0;i<s;i++)
if (i < r[i])
swap(a[i],a[r[i]]);
for (int mid=1;mid<s;mid <<=1)
{
int gn=ksm(t,(p-1)/(mid << 1));
for (int j=0;j<s;j+=(mid << 1))
{
int g=1;
for (int k=0;k<mid;k++,g=(ll)g*gn%p)
{
int x=a[j+k],y=(ll)g*a[j+k+mid]%p;
a[j+k]=(x+y)%p;
a[j+k+mid]=(x-y)%p;
}
}
}
}
int main()
{
Gi=ksm(G,p-2);
scanf("%d%d",&n,&m);
for (int i=0;i<=n;i++)
scanf("%d",&a[i]);
for (int i=0;i<=m;i++)
scanf("%d",&b[i]);
s=1,l=0;
while (s<=n+m)
{
s <<=1;
l++;
}
for (int i=0;i<s;i++)
r[i]=(r[i >> 1] >> 1) | ((i & 1) << (l-1));
NTT(a,G);
NTT(b,G);
for (int i=0;i<s;i++)
a[i]=(ll)a[i]*b[i]%p;
NTT(a,Gi);
int q=ksm(s,p-2);
for (int i=0;i<=n+m;i++)
{
a[i]=(ll)a[i]*q%p;
a[i]=(a[i]%p+p)%p;
}
for (int i=0;i<=n+m;i++)
printf("%d ",a[i]);
putchar('\n');
return 0;
}

浙公网安备 33010602011771号