【Luogu P3455】 [POI2007]ZAP-Queries

题目链接:

题目

博客园

题目大意:

快速求:

\[\sum_{i=1}^{n}\sum_{j=1}^{m}\left[\operatorname{gcd}(i,j)==d\right] \]

正文:

将式子化简:

\[\begin{aligned}\sum_{i=1}^{n}\sum_{j=1}^{m}\left[\operatorname{gcd}(i,j)==d\right] &= \sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{d}\rfloor}\left[\operatorname{gcd}(i,j)==1\right]\\ &=\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{d}\rfloor}\sum_{k|\operatorname{gcd}(i,j)}\mu(k)\end{aligned} \]

\(\mu\) 那儿移到前面:

\[\begin{aligned}\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{d}\rfloor}\sum_{k|\operatorname{gcd}(i,j)}\mu(k) &= \sum_{k=1}\mu(k)\sum_{k|i}^{\lfloor\frac{n}{d}\rfloor}\sum_{k|j}^{\lfloor\frac{m}{d}\rfloor}1\\ &=\sum_{k=1}\mu(k)\left\lfloor\frac{n}{kd}\right\rfloor\left\lfloor\frac{m}{kd}\right\rfloor\end{aligned} \]

接着预处理一下 \(\mu\) 函数再求个关于 \(\left\lfloor\frac{n}{kd}\right\rfloor\left\lfloor\frac{m}{kd}\right\rfloor\)整除分块 就行了。

代码:

ll n, m, d, t;
ll ans;
ll pri[N], miu[N], cnt, sum[N];
bool vis[N];

void prework()
{
	miu[1] = 1;
	for (int i = 2; i <= N - 10; i++)
	{
		if(!vis[i]) {pri[++cnt] = i, miu[i] = -1;}
		for (int j = 1; j <= cnt && pri[j] * i <= N - 10; j++)
		{
			vis[pri[j] * i] = 1;
			if (i % pri[j] == 0)
			{
				miu[i * pri[j]] = 0;
				break;
			}
			else
				miu[i * pri[j]] = -miu[i];
		}
	}
	for (int i = 1; i <= N - 10; i++)
		sum[i] = sum[i - 1] + miu[i];
}

int main()
{
	prework();
	for (scanf ("%lld", &t); t--; )
	{
		ans = 0LL;
		scanf("%lld%lld%lld", &n, &m, &d);
		if(n > m)
		{
			int c = n; n = m; m = c;
		}
		n /= d, m /= d;
		for (int l = 1, r; l <= n; l = r + 1)
		{
			r = min (n / (n / l), m / (m / l));
			ans += (sum[r] - sum[l - 1]) * (n / l) * (m / l);
		}
		printf ("%lld\n", ans);
	}
	return 0;
}

posted @ 2020-09-01 20:30  Jayun  阅读(112)  评论(0编辑  收藏  举报