[网络流24题]P3355 骑士共存
最小割经典思想+用计算机系统的内存访问卡常
https://www.luogu.com.cn/problem/P3355
思路
考虑首先将所有的方格都选上,再去掉不能选的部分。
我们将所有互斥的方格之间连边,当图连通时则表示当前解中仍然存在不合法的放法,因此很自然地想到当图被割开时合法,由于要最大化答案,因此求最小割。
不难发现棋盘格的黑白两色形成一个二分图,很好建图,最大匹配/最大流即可,这题的卡常姿势很有趣,计系实验过后第一次在acm里用这个2333。
代码
来看一看下面两个存图时的访问顺序
int dx[8] = {-2, -1, 1, 2, 2, 1, -1, -2};
int dy[8] = {1, 2, 2, 1, -1, -2, -2, -1};
和
int dx[8] = {1, 2, 2, 1, -1, -2, -2, -1};
int dy[8] = {-2, -1, 1, 2, -2, -1, 1, 2};
上面的写法本地运行4000+,而下面的只需要 700+,在计系中学习过连续内存访问可以提高程序运行效率,这可以快乐地从TLE变成AC!表示学到了,下次可以 next_permutation 一组最快的提交2333
二分图卡常代码
#include <bits/stdc++.h>
using namespace std;
bool vis[40010];
int link[40010];
int n, m, ans;
vector<int> mp[40010];
bool f[205][205];
/*
int dx[8] = {-2, -1, 1, 2, 2, 1, -1, -2};
int dy[8] = {1, 2, 2, 1, -1, -2, -2, -1};*/
const int dx[8] = {1, 2, 2, 1, -1, -2, -2, -1};
const int dy[8] = {-2, -1, 1, 2, -2, -1, 1, 2};
int dfs(int x) {
for (int i = 0; i < mp[x].size(); i++) {
int v = mp[x][i];
if (vis[v] == 0) {
vis[v] = 1;
if (link[v] == 0 || dfs(link[v]) == 1) {
link[v] = x;
return 1;
}
}
}
return 0;
}
int id(int x, int y) { return (x - 1) * n + y; }
clock_t st, ed;
// int node[N], tot;
int main() {
st = clock();
freopen("C:\\Users\\lenovo\\Downloads\\P3355_3.in", "r", stdin);
cin >> n >> m;
for (int i = 0; i < m; i++) {
int x, y;
cin >> x >> y;
f[x][y] = 1;
}
// cout << "aaa";
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
if ((i + j) % 2 || f[i][j]) continue;
for (int k = 0; k < 8; k++) {
int nx = i + dx[k], ny = j + dy[k];
if (nx > 0 && ny > 0 && nx <= n && ny <= n && !f[nx][ny])
mp[id(i, j)].push_back(id(nx, ny));
}
}
}
for (int i = 1; i <= n * n; i++) {
memset(vis, 0, sizeof(vis));
if (dfs(i)) ans++;
}
cout << n * n - m - ans << endl;
ed = clock();
cout << (ed - st) << endl;
}
正经Dinic
点击查看代码
#include <bits/stdc++.h>
#define endl '\n'
#define IOS \
ios::sync_with_stdio(0); \
cin.tie(0); \
cout.tie(0)
#define P pair<int, int>
#define endl '\n'
using namespace std;
typedef long long ll;
const int maxn = 200 * 200 + 10;
const int N = 200 * 200 + 10;
const int M = N << 5;
const int INF = 0x3f3f3f3f;
const ll inf = 1e18;
ll dis[maxn];
bool vis[maxn];
struct node {
int v, w, to;
} edge[M * 2];
int pre[N], cnt, dep[N];
int S, T, head[N], sum;
int n, m, q[N], cur[N];
void add(int u, int v, int w) {
// cout << u << " " << v << endl;
edge[cnt] = {v, w, head[u]};
head[u] = cnt++;
edge[cnt] = {u, 0, head[v]};
head[v] = cnt++;
}
bool bfs() {
for (int i = 0; i <= T; i++) dep[i] = 0;
dep[S] = 1;
int l = 0, r = 1;
q[r] = S;
while (l < r) {
int u = q[++l];
for (int i = head[u]; i != -1; i = edge[i].to) {
int v = edge[i].v;
if (!dep[v] && edge[i].w) dep[v] = dep[u] + 1, q[++r] = v;
}
}
return dep[T];
}
int dfs(int u, int mi) {
int res = 0;
if (mi == 0 || u == T) return mi;
for (int &i = cur[u]; i != -1; i = edge[i].to) {
int v = edge[i].v;
if (dep[u] + 1 == dep[v] && edge[i].w) {
int minn = dfs(v, min(mi - res, edge[i].w));
edge[i].w -= minn;
edge[i ^ 1].w += minn;
res += minn;
if (res == mi) return res;
}
}
if (res == 0) dep[u] = 0;
return res;
}
int dinic() {
ll res = 0;
while (bfs()) {
memcpy(cur, head, sizeof(head));
// cout<<res<<endl;
res += dfs(S, INF);
}
return res;
}
int id(int x, int y) { return (n * (x - 1) + y); }
int mp[205][205], f;
int dx[] = {-2, -1, 1, 2, 2, 1, -1, -2};
int dy[] = {1, 2, 2, 1, -1, -2, -2, -1};
int main() {
freopen("C:\\Users\\lenovo\\Downloads\\P3355_3.in", "r", stdin);
memset(head, -1, sizeof head);
cin >> n >> m;
int ans = n * n;
S = ans + 1, T = S + 1;
for (int i = 0, x, y; i < m; i++) {
cin >> x >> y;
mp[x][y] = 1;
ans--;
}
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
if (mp[i][j]) continue;
int now = id(i, j);
if ((i+j) & 1) {
if (!mp[i][j]) add(S, now, 1);
} else {
if (!mp[i][j]) add(now, T, 1);
continue;
}
for (int k = 0; k < 8; k++) {
int nx = i + dx[k], ny = j + dy[k];
if (nx < 1 || nx > n || ny < 1 || ny > n || mp[nx][ny])
continue;
int to = id(nx, ny);
add(now, to, INF);
// printf("(%d,%d) :%d\n", i, j, id(i, j));
// printf("(%d,%d) :%d\n", nx, ny, id(nx, ny));
// add(now, id(nx, ny), INF);
}
}
}
int flow = dinic();
// cout << flow << endl;
ans -= flow;
cout << ans;
return 0;
}

浙公网安备 33010602011771号