Win11 install CUDA 12.5
1.Check pc supported Nvidia GPU
nvidia-smi

2.Download CUDA12.5
https://developer.download.nvidia.cn/compute/cuda/12.5.0/local_installers/cuda_12.5.0_555.85_windows.exe
3.Install CUDA12.5
//validate nvcc --version
C:\Users\fred>nvcc --version
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2024 NVIDIA Corporation
Built on Wed_Apr_17_19:36:51_Pacific_Daylight_Time_2024
Cuda compilation tools, release 12.5, V12.5.40
Build cuda_12.5.r12.5/compiler.34177558_0

4.Save below file as vector_add.cu
// 文件名:vector_add.cu #include <stdio.h> #include <cuda_runtime.h> // 必须包含CUDA头文件 // 1. 定义核函数 // __global__ 声明这是一个在GPU上运行的核函数 // 它执行的任务是:对于每个索引i, c[i] = a[i] + b[i] __global__ void vectorAdd(const float *A, const float *B, float *C, int numElements) { // 2. 计算当前线程的全局索引 // blockIdx.x: 当前Block在Grid中的索引 // blockDim.x: 一个Block中的线程数量 // threadIdx.x: 当前线程在Block中的索引 int i = blockDim.x * blockIdx.x + threadIdx.x; // 3. 检查索引是否在有效范围内(防止越界) if (i < numElements) { C[i] = A[i] + B[i]; } } int main(void) { // 设置向量长度 int numElements = 50000; size_t size = numElements * sizeof(float); printf("[Vector addition of %d elements]\n", numElements); // 4. 在主机上分配内存并初始化 float *h_A = (float *)malloc(size); float *h_B = (float *)malloc(size); float *h_C = (float *)malloc(size); // 存放GPU计算结果 // 初始化输入向量 for (int i = 0; i < numElements; ++i) { h_A[i] = rand() / (float)RAND_MAX; // 0~1之间的随机数 h_B[i] = rand() / (float)RAND_MAX; } // 5. 在设备上分配内存 float *d_A = NULL; float *d_B = NULL; float *d_C = NULL; cudaMalloc((void **)&d_A, size); cudaMalloc((void **)&d_B, size); cudaMalloc((void **)&d_C, size); // 6. 将数据从主机内存拷贝到设备内存 cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice); cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice); // 7. 启动核函数! // 配置线程结构 int threadsPerBlock = 256; // 计算需要多少个Block: (N + threadsPerBlock - 1) / threadsPerBlock // 这是一个常见的向上取整除法技巧 int blocksPerGrid = (numElements + threadsPerBlock - 1) / threadsPerBlock; printf("CUDA kernel launch with %d blocks of %d threads\n", blocksPerGrid, threadsPerBlock); // 调用核函数,语法:<<<blocksPerGrid, threadsPerBlock>>> vectorAdd<<<blocksPerGrid, threadsPerBlock>>>(d_A, d_B, d_C, numElements); // 8. 等待GPU上所有计算完成,再继续执行主机代码 cudaDeviceSynchronize(); // 9. 将计算结果从设备内存拷贝回主机内存 cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost); // 10. 验证结果 (可选,但很重要) for (int i = 0; i < numElements; ++i) { if (fabs(h_A[i] + h_B[i] - h_C[i]) > 1e-5) { fprintf(stderr, "Result verification failed at element %d!\n", i); exit(EXIT_FAILURE); } } printf("Test PASSED\n"); // 11. 释放设备内存 cudaFree(d_A); cudaFree(d_B); cudaFree(d_C); // 12. 释放主机内存 free(h_A); free(h_B); free(h_C); printf("Done\n"); system("pause"); return 0; }
5.Run via
nvcc -o vector_add vector_add.cu
nvcc -o vector_add vector_add.cu
nvcc -o vector_add vector_add.cu nvcc fatal : Cannot find compiler 'cl.exe' in PATH
6.Configure the value in system variables path,then restart.
C:\Program Files\Microsoft Visual Studio\2022\Community\VC\Tools\MSVC\14.xx.xxxxx\bin\Hostx64\x64
7.Run with error again,because CUDA12.5 only support Visual Studio 2022 and can not support Visual Studio 2026(Insiders).
D:\AI>nvcc -o vector_add vector_add.cu vector_add.cu C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.5\include\crt/host_config.h(170): fatal error C1189: #error: -- unsupported Microsoft Visual Studio version! Only the versions between 2017 and 2022 (inclusive) are supported! The nvcc flag '-allow-unsupported-compiler' can be used to override this version check; however, using an unsupported host compiler may cause compilation failure or incorrect run time execution. Use at your own risk.
8.Run with compatible mode
nvcc -o vector_add vector_add.cu -allow-unsupported-compiler


浙公网安备 33010602011771号