Problem A
#include<bits/stdc++.h>
using namespace std;
const int N = 1010, MOD = 1e9+7;
const int P = 131;
char p[N], s[N]; //p=Pattern
int nxt[N];
int n, m;
/*
abacdaba
00100123
*/
int main() {
while (1) {
scanf("%s", s + 1);
if (s[1] == '#') return 0;
scanf("%s",p+1);
int ans = 0;
n = strlen(p + 1);
m = strlen(s + 1);
for (int i = 2, j = 0; i <= n; i++) {
while (j and p[i] != p[j + 1]) j = nxt[j];
if (p[i] == p[j + 1]) j++;
nxt[i] = j;
}
for (int i = 1, j = 0; i <= m; i++) {
while (j != 0 and s[i] != p[j + 1]) {//不匹配就根据next移动
j = nxt[j];
}
if (s[i] == p[j + 1]) j++;
if (j == n) {
ans++;
j = 0;//注意这里j为0,而KMP算法中这里是j=F[j-1]+1,因为一块花纹不能重复出现在多条小饰条上
}
}
printf("%d\n",ans);
}
return 0;
}
Problem B
#include<bits/stdc++.h>
using namespace std;
const int N = 1010000, MOD = 1e9+7;
const int P = 131;
char p[N], s[N]; //p=Pattern
int nxt[N];
int n, m;
/*
abacdaba
00100123
*/
int main() {
scanf("%d%s", &n, p + 1);
for (int i = 2, j = 0; i <= n; i++) {
while (j and p[i] != p[j + 1]) j = nxt[j];
if (p[i] == p[j + 1]) j++;
nxt[i] = j;
}
printf("%d\n", n-nxt[n]);
return 0;
}
Problem C
#include<bits/stdc++.h>
using namespace std;
const int N = 1010000, MOD = 1e9+7;
const int P = 131;
int n,m;
char p[N];
int ne[N];
int main() {
scanf("%d%s",&n,p+1);
for(int i = 2,j = 0;i <= n;i++){
while(j and p[i] != p[j+1]) j = ne[j];
if(p[i] == p[j+1]) j++;
ne[i] = j;
// cout<<ne[i]<<" ";
}
long long ans = 0;
for(int i = 1;i <= n;i++){
int j = i;
while(ne[j] != 0) j = ne[j];
ans += i-j;
// cout<<i<<" ";
if(ne[i]) ne[i] = j;
}
cout<<ans<<endl;
return 0;
}
Problem D
#include<bits/stdc++.h>
using namespace std;
const int N = 30010, MOD = 1e9+7;
const int P = 131;
char s[N];
int ne[N],ans,k,n;
void kmp(char s[]){
int len = strlen(s+1);
for(int i = 2,j = 0;i <= len;i++){
while(j and s[i] != s[j+1]) j = ne[j];
if(s[i] == s[j+1]) j++;
int p = ne[i] = j;
while(p and 2*p >= i) p = ne[p];
if(p >= k) ans++;
}
}
int main() {
cin>>s+1>>k;
n = strlen(s+1);
for(int i = 0;i <= n;i++){
kmp(s+i);
}
cout<<ans<<endl;
return 0;
}
Problem E

/*
思路:
从前到后遍历整个主串,一般情况下直接push到栈里,如果栈的大小大于等于模式串的大小而且
栈顶的前几个(确切的说,是模式串的大小)个字符的哈希值和模式串相同,就把这些值
pop掉。
该思路能够保证每次只有在栈中组成一个完整的模式串时才push掉它,不存在落下任何主串中
的模式串的情况。如果用系统栈的话最坏时间复杂度是O(2n)但是数组模拟栈的话就不需要
一个一个pop字符,直接将指向栈顶的变量调到pop所有模式串的位置即可。这样做的复杂度是
O(n).线性!
*/
#include <bits/stdc++.h>
using namespace std;
const int N = 1e6+10,P = 131;
typedef unsigned long long ull;
char st[N];
ull h[N],p[N];
int n,s1,s2,tp;
char s[N];
char pattern[N];
ull get1(int l,int r){
return h[r]-h[l-1]*p[r-l+1];
}
int main(){
cin>>s+1>>pattern+1;
s1 = strlen(s+1);
s2 = strlen(pattern+1);
p[0] = 1;
for (int i = 1; i <= s1; i++) {
p[i] = p[i - 1] * P;
}
ull hash_pattern = 0;
for(int i = 1;i <= s2;i++) hash_pattern = hash_pattern*P+pattern[i];
if(s1 < s2){
for(int i = 1;i <= s1;i++) cout<<s[i];
return 0;
}
for(int i = 1;i <= s1;i++){
st[++tp] = s[i];
h[tp] = h[tp-1]*P+st[tp];//同下一行
if(tp >= s2 and get1(tp-s2+1,tp/*这里必须是tp!如果删除一次后i就不等于tp了,我们维护的是栈,不能使用i!这里计算的是栈中元素的哈希,如果用i的话就不同步了*/) == hash_pattern) tp = tp-s2;
}
for(int i = 1;i <= tp;i++) cout<<st[i];
return 0;
}