(模板)计算几何点线面形基础知识总结

  计算几何点线面形基础知识总结模板:

 

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<cstdlib>
using namespace std;

const double eps=1e-8;
const double inf=1e20;int sgn(double x){
    if(abs(x)<eps) return 0;
    if(x<0) return -1;
    return 1;
}

struct Point{
    double x,y;
    Point(double xx=0,double yy=0):x(xx),y(yy){}
    bool operator == (const Point& b)const{
        sgn(x-b.x)==0&&sgn(y-b.y)==0;
    }
    Point operator + (const Point& b)const{
        return Point(x+b.x,y+b.y);
    }
    Point operator - (const Point& b)const{
        return Point(x-b.x,y-b.y);
    }
    Point operator * (const double& k)const{  //返回相乘后的点
        return Point(x*k,y*k);
    }
    Point operator / (const double& k)const{  //返回相除后的点
        return Point(x/k,y/k);
    }
    double operator * (const Point& b)const{  //点乘
        return x*b.x+y*b.y;
    }
    double operator ^ (const Point& b)const{  //叉乘
        return x*b.y-b.x*y;
    }
    double len(){    //返回长度
        return sqrt(x*x+y*y);
    }
    double len2(){   //返回长度的平方
        return x*x+y*y;
    }
    Point norm(double r){  //标准化,返回将长度化为r的点
        double l=len();
        if(!sgn(l)) return *this;
        r/=l;
        return Point(x*r,y*r);
    }
    //绕原点旋转角度b(弧度值),后x、y的变化
    void transXY(double b){
        double tx=x,ty=y;
        x=tx*cos(b)-ty*sin(b);
        y=tx*sin(b)+ty*cos(b);
    }
};

//根据正方形的对角线端点p0和p2,得到另外两个点p1和p3
//p0,p1,p2,p3为逆时针顺序
void GetSquarePoint(const Point& p0, const Point& p2, Point& p1, Point& p3){
    p1.x = (p0.x+p2.x+p2.y-p0.y)/2.0;
    p1.y = (p0.y+p2.y+p0.x-p2.x)/2.0;
    p3.x = (p0.x+p2.x+p0.y-p2.y)/2.0;
    p3.y = (p0.y+p2.y+p2.x-p0.x)/2.0;
}
struct Line{ Point s,e; Line(){} Line(Point ss,Point ee){ s=ss,e=ee; } //返回点p在直线上的投影 Point PointProg(Point p){ return s+(((e-s)*((e-s)*(p-s)))/((e-s).len2())); } //返回点p关于直线的对称点 Point PointSymmetry(Point p){ Point q=PointProg(p); return Point(2*q.x-p.x,2*q.y-p.y); } //点是否在直线上 bool PointOnLine(Point p){ return sgn((p-s)^(e-s))==0; } //点是否在线段上 bool PointOnSeg(Point p){ return sgn((p-s)^(e-s))==0&&sgn((p-s)*(p-e))<=0; } //两直线相交求交点 //第一个值为0表示直线重合,为1表示平行,为2表示相交 //只有第一个值为2时,交点才有意义 pair<int,Point> operator &(const Line &b)const{ Point res = s; if(sgn((s-e)^(b.s-b.e)) == 0) { if(sgn((s-b.e)^(b.s-b.e)) == 0) return make_pair(0,res);//重合 else return make_pair(1,res);//平行 } double t = ((s-b.s)^(b.s-b.e))/((s-e)^(b.s-b.e)); res.x += (e.x-s.x)*t; res.y += (e.y-s.y)*t; return make_pair(2,res); } }; struct Circle{ Point p; double r; Circle(){} Circle(Point pp,double rr){ p=pp,r=rr; } //求直线与圆的交点,返回交点个数 int LineCrossCircle1(Line l,Point &p1,Point &p2){ double dx=l.e.x-l.s.x,dy=l.e.y-l.s.y; double a=dx*dx+dy*dy; double b=2*dx*(l.s.x-p.x)+2*dy*(l.s.y-p.y); double c=(l.s.x-p.x)*(l.s.x-p.x)+(l.s.y-p.y)*(l.s.y-p.y)-r*r; double d=b*b-4*a*c; if(sgn(d)<0) return 0; int res=0; double ans1=(-b-sqrt(d))/(2.0*a); double ans2=(-b+sqrt(d))/(2.0*a); p1=Point(l.s.x+ans1*dx,l.s.y+ans1*dy); ++res; p2=Point(l.s.x+ans2*dx,l.s.y+ans2*dy); ++res; if(res==2&&sgn(ans1-ans2)==0) --res; return res; } //求射线与圆的交点,返回交点个数 int LineCrossCircle2(Line l,Point &p1,Point &p2){ double dx=l.e.x-l.s.x,dy=l.e.y-l.s.y; double a=dx*dx+dy*dy; double b=2*dx*(l.s.x-p.x)+2*dy*(l.s.y-p.y); double c=(l.s.x-p.x)*(l.s.x-p.x)+(l.s.y-p.y)*(l.s.y-p.y)-r*r; double d=b*b-4*a*c; if(sgn(d)<0) return 0; int res=0; double ans1=(-b-sqrt(d))/(2.0*a); double ans2=(-b+sqrt(d))/(2.0*a); if(sgn(ans1)>=0){ p1=Point(l.s.x+ans1*dx,l.s.y+ans1*dy); ++res; } if(sgn(ans2)>=0){ p2=Point(l.s.x+ans2*dx,l.s.y+ans2*dy); ++res; } if(res==2&&sgn(ans1-ans2)==0) --res; return res; } }; //判断线段相交 bool inter(Line l1,Line l2){ return max(l1.s.x,l1.e.x)>=min(l2.s.x,l2.e.x)&& max(l2.s.x,l2.e.x)>=min(l1.s.x,l1.e.x)&& max(l1.s.y,l1.e.y)>=min(l2.s.y,l2.e.y)&& max(l2.s.y,l2.e.y)>=min(l1.s.y,l1.e.y)&& sgn((l1.s-l2.s)^(l2.e-l2.s))*sgn((l1.e-l2.s)^(l2.e-l2.s))<=0&& sgn((l2.s-l1.s)^(l1.e-l1.s))*sgn((l2.e-l1.s)^(l1.e-l1.s))<=0; } double dis(Point a,Point b){ return sqrt((b-a)*(b-a)); } //判断点在线段上 bool OnSeg(Point P,Line L){ return sgn((L.s-P)^(L.e-P))==0&& sgn((P.x-L.s.x)*(P.x-L.e.x))<=0&& sgn((P.y-L.s.y)*(P.y-L.e.y))<=0; } //判断点在凸多边形内,复杂度O(n) //点形成一个凸包,而且按逆时针排序(如果是顺时针把里面的<0改为>0) //点的编号:0~n-1 //返回值: //-1:点在凸多边形外 //0:点在凸多边形边界上 //1:点在凸多边形内 int inConvexPoly(Point a,Point p[],int n){ for(int i=0;i<n;++i) if(sgn((p[i]-a)^(p[(i+1)%n]-a))<0) return -1; else if(OnSeg(a,Line(p[i],p[(i+1)%n]))) return 0; return 1; } //判断点在任意多边形内,复杂度O(n) //射线法,poly[]的顶点数要大于等于3,点的编号0~n-1,按逆时针或顺时针排序 //返回值 //-1:点在凸多边形外 //0:点在凸多边形边界上 //1:点在凸多边形内 int inPoly(Point a,Point p[],int n){ int cnt=0; Line ray,side; ray.s=a; ray.e.y=a.y; ray.e.x=-inf; for(int i=0;i<n;++i){ side.s=p[i]; side.e=p[(i+1)%n]; if(OnSeg(a,side)) return 0; if(sgn(side.s.y-side.e.y)==0) continue; if(OnSeg(side.s,ray)){ if(sgn(side.s.y-side.e.y)>0) ++cnt; } else if(OnSeg(side.e,ray)){ if(sgn(side.e.y-side.s.y)>0) ++cnt; } else if(inter(ray,side)) ++cnt; } if(cnt%2==1) return 1; else return -1; } //判断凸多边形 //允许共线边 //点可以是顺时针给出也可以是逆时针给出 //点的编号是0~n-1 bool isconvex(Point poly[],int n){ bool s[3]; memset(s,false,sizeof(s)); for(int i=0;i<n;++i){ s[sgn((poly[(i+1)%n]-poly[i])^(poly[(i+2)%n]-poly[i]))+1]=true; if(s[0]&&s[2]) return false; } return true; } //点到线段的距离 //返回点到线段最近的点 Point NearestPointToLineSeg(Point P,Line L){ Point result; double t=((P-L.s)*(L.e-L.s))/((L.e-L.s)*(L.e-L.s)); if(t>=0&&t<=1){ result.x=L.s.x+(L.e.x-L.s.x)*t; result.y=L.s.y+(L.e.y-L.s.y)*t; } else{ if(dis(P,L.s)<dis(P,L.e)) return L.s; else return L.e; } return result; }

 

 

以pt点为中心进行极角排序:

struct Point{
    int id,x,y;
    Point(){}
    Point(int x,int y):x(x),y(y){}
}p1[maxn],p2[maxn],pt;

Point operator - (const Point& a,const Point& b){
    return Point(a.x-b.x,a.y-b.y);
}

bool operator ^ (const Point& a,const Point& b){
    return (1LL*a.x*b.y-1LL*b.x*a.y)>0;
}
//返回向限
inline int Quadrant(const Point& a){
    if(a.x>0&&a.y>=0) return 1;
    else if(a.x<=0&&a.y>0) return 2;
    else if(a.y<=0&&a.x<0) return 3;
    else if(a.x>=0&&a.y<0) return 4;
}
//以pt为中心进行极角排序
bool operator < (const Point& c,const Point& d){
    Point a=c-pt,b=d-pt;
    int qa=Quadrant(a),qb=Quadrant(b);
    if(qa!=qb) return qa<qb;
    return a^b;
}

 

 

(其中叉积求直线的交点的证明见https://www.cnblogs.com/jklover/p/10484313.html,叉积判断线段相交用到了快速排斥实验和跨立实验。)

判断线段是否在多边形内:当多边形为凸时,只需判断线段的两个端点在多边形内即可。

            当多边形为凹时,其伪代码如下,复杂度为O(n):

              

 

posted @ 2019-09-10 17:41  Frank__Chen  阅读(414)  评论(0编辑  收藏  举报