平面上多根任意线的拓扑成一组几何对象的思路
平面上多根任意线的拓扑思路:
-
将线统统在相交处打断
-
将不封闭的地方删除(实际操作或许不能这么粗暴)
-
给线增加两个属性来确定左边和右边是否有区
-
得到图形的最大边界,并将边界上的没有线的地方补上直线,将线全部转为边界的顺时针方向,并标记属性表示左边有区
-
取出任意一根线,如果右边显示没有区域,则开始造区
-
右侧区:造区过程,线1-》线2->。。。线n->指向线1时即完成造区,下一根线的选择应该为逆时针夹角最小的那根。参与造区的线属性修改(左侧相反)
-
左侧同理
-
这样就得到了不考虑内部环的多边形集合啦、将所有多边形转换为顺时针方向的节点顺序
-
两两遍历,查找内部的几何对象,来扣除漏洞,其中的漏洞以逆时针表示,即将多边形内部的多边形以逆时针的方向加入集合。最终顺时针的求并,逆时针的求并。
-
我他妈真是个天才
未来通过NTS实现了在回来补

浙公网安备 33010602011771号