POJ1741:树的点分治
Tree
| Time Limit: 1000MS | Memory Limit: 30000K | |
| Total Submissions: 31781 | Accepted: 10615 |
Description
Give a tree with n vertices,each edge has a length(positive integer less than 1001).
Define dist(u,v)=The min distance between node u and v.
Give an integer k,for every pair (u,v) of vertices is called valid if and only if dist(u,v) not exceed k.
Write a program that will count how many pairs which are valid for a given tree.
Input
The input contains several test cases. The first line of each test case contains two integers n, k. (n<=10000) The following n-1 lines each contains three integers u,v,l, which means there is an edge between node u and v of length l.
The last test case is followed by two zeros.
Output
For each test case output the answer on a single line.
Sample Input
5 4
1 2 3
1 3 1
1 4 2
3 5 1
0 0
Sample Output
8
题解:点分治模板题,求树上距离不大于k的点的对数
#include <bits/stdc++.h>
using namespace std;
int const N = 10000 + 10;
int const inf = 0x7f7f7f7f;
int n,k,tot,root,Val;
int ans,mav[N],size[N],num[N];
int val[2*N],first[N],ne[2*N],to[2*N];
bool vis[N];
void add(int x,int y,int dis){
ne[++tot] = first[x];
to[tot] = y;
val[tot] = dis;
first[x] = tot;
}
void Init(){
tot = 0;
memset(first,0,sizeof(first));
memset(vis,false,sizeof(vis));
for(int i=1;i<=n-1;i++){
int x,y,dis;
scanf("%d%d%d",&x,&y,&dis);
add(x,y,dis); add(y,x,dis);
}
ans = 0;
}
void Get_Size(int x,int fa){
size[x] = 1,mav[x] = 0;
for(int i=first[x];i;i=ne[i]){
int u = to[i];
if(u == fa || vis[u]) continue;
Get_Size(u,x);
size[x] += size[u];
mav[x] = max(mav[x],size[u]);
}
}
void Get_Root(int sz,int x,int fa){
mav[x] = max(size[sz] - size[x],mav[x]);
if(mav[x] < Val){
Val = mav[x];
root = x;
}
for(int i=first[x];i;i=ne[i]){
int u = to[i];
if(u == fa || vis[u]) continue;
Get_Root(sz,u,x);
}
}
void Get_Dis(int x,int fa,int dis){
num[++tot] = dis;
for(int i=first[x];i;i=ne[i]){
if(to[i] == fa || vis[to[i]]) continue;
Get_Dis(to[i],x,dis+val[i]);
}
}
int cacl(int x,int dis){
int now = 0;tot = 0;
Get_Dis(x,0,dis);
sort(num+1,num+1+tot);
for(int i=1,j=tot;i<j;i++){
while(num[i]+num[j]>k && i<j) j--;
now += (j-i);
}
return now;
}
void DFS(int x){
Val = inf;
Get_Size(x,0);
Get_Root(x,x,0);
ans += cacl(root,0);
vis[root] = true;
for(int i=first[root];i;i=ne[i]){
if(!vis[to[i]]){
ans -= cacl(to[i],val[i]);
DFS(to[i]);
}
}
}
int main(){
while(cin>>n>>k){
if(!n && !k) return 0;
Init();
DFS(1);
printf("%d\n",ans);
}
}

浙公网安备 33010602011771号