定义
const double eps = 1e-8;
int dcmp(double x){ //判断符号
if(fabs(x) < eps) return 0;
else return x < 0 ? -1 : 1;
}
typedef struct Point{ //点和向量
double x,y;
Point(){};
Point(double x,double y):x(x),y(y){};
Point operator + (const Point& e)const{ //加
return Point(x + e.x,y + e.y);
}
Point operator - (const Point& e)const{ //减
return Point(x - e.x,y - e.y);
}
Point operator * (const double e)const{ //乘
return Point(x * e,y * e);
}
Point operator / (const double e)const{ //除
return Point(x / e,y / e);
}
bool operator == (const Point &e)const{ //相等
return !dcmp(x - e.x) && !dcmp(y - e.y);
}
bool operator < (const Point& e)const{ //比较
return x < e.x || x == e.x && y < e.y;
}
}Vector;
double Dot(Vector a,Vector b){
return a.x * b.x + a.y * b.y;
}
double Cross(Vector a,Vector b){
return a.x * b.y - a.y * b.x;
}
常用
double Angle(Vector A,Vector B){ //余弦定理计算夹角
return acos(Dot(A,B)) / Length(A) / Length(B));
}
Vector Rotate(Vector A,double rad){ //向量旋转
return Vector(A.x * cos(rad) - A.y * sin(rad),A.x * cos(rad) + A.y * sin(rad));
}
double Length(Vector A){ //计算向量的长度
return sqrt(Dot(A,A));
}
Vector Normal(Vector A){ //计算单位法向量
double len = Length(A);
return Vector(-A.y / len,A.x / len); //左转90度。
}
double DistanceToLine(Point p,Point a,Point b){ //点到直线的距离
Vector v1 = b - a, v2 = p - a;
return fabs(Cross(v1,v2)) / Length(v1);
}
double DistanceToSegment(Point p,Point a,Point b){ //点到线段的距离
if(a == b) return Length(p - a);
Vector v1 = b - a, v2 = p - a, v3 = p - b;
if(dcmp(Dot(v1,v2)) < 0) return Length(v2);
if(dcmp(Dot(v1,v3)) > 0) return Length(v3);
else return DistanceToLine(p,a,b);
}
直线与直线的关系判断
int Judge(Point a1,Point b1,Point a2,Point b2){
if(dcmp(Cross(b1 - a1,b2 - a2)) == 0){
if(dcmp(Cross(a2 - a1,b2 - a1)) == 0) return 1; //重合
else return 2; //平行
}else return 3; //相交
}
Point intersection(Point p,Vector v,Point q,Vector w){ //两直线(p+tv)和(q+tw)求交点
Vector u = p - q;
double t = Cross(w,u) / Cross(v,w);
return p + Point(v.x * t,v.y * t);
}
线段相交
//非规范相交
bool onsegment(Point p,Point a1,Point a2){ //点p是否在线段a1a2上,端点不重合。如果否则取等号,则端点可以重合。
return dcmp(Cross(a1 - p,a2 - p)) == 0 && dcmp(Dot(a1 - p,a2 - p)) <= 0;
}
//规范相交
bool SegmentProperIntersection1(Point a1,Point a2,Point b1,Point b2){
double c1 = Cross(a2 - a1,b1 - a1), c2 = Cross(a2 - a1,b2 - a1);
double c3 = Cross(b2 - b1,a1 - b1), c4 = Cross(b2 - b1,a2 - b1);
return dcmp(c1) * dcmp(c2) < 0 && dcmp(c3) * dcmp(c4) < 0;
}
bool SegmentProperIntersection2(Point a1,Point b1,Point a2,Point b2){
if(SegmentProperIntersection1(a1,b1,a2,b2)) return true;
if(onsegment(a1,a2,b2) || onsegment(b1,a2,b2)) return true;
if(onsegment(a2,a1,b1) || onsegment(b2,a1,b1)) return true;
return false;
}
多边形面积
double getarea(){ //点的坐标为0……n-1
double area = 0;
for(int i=1;i<n-1;i++)
area += ((p[i] - p[0]) ^ (p[i+1]-p[0]));
return fabs(area / 2);
}
皮克定理
![]()
极角排序
bool cmp1(Point a,Point b){ //atan2(y,x)表示与x正方向的夹角,大小为(-π,π]
double t1 = atan2(a.y-st[0].y,a.x-st[0].x);
double t2 = atan2(b.y-st[0].y,b.x-st[0].x);
return t1 != t2 ? t1 < t2 : a.x < b.x;
}
bool cmp2(Point a,Point b){ //利用叉乘的性质
double t = cross(a,b);
return t > 0 || t == 0 && a.x < b.x;
}
凸包
void convex(){ //Graham扫描法
sort(p,p+n,cmp); //找纵坐标最小的点
st[0] = p[0];
sort(p+1,p+n,cmp2); //极角排序
st[top=1] = p[1];;
for(int i=2;i<n;i++){
while(i >= 1 && cross(st[top-1],st[top],p[i]) < 0) top--;
st[++top] = p[i]; ////cross(a,b,c)计算向量ab✖ac
}
}
int ConvexHull(Point *p,int n,Point* ch){ //Andrew算法求凸包
sort(p,p+n); //先找x小的,如果x相同,找y小的
int m = 0;
for(int i=0;i<n;i++){
while(m > 1 && Cross(ch[m-1] - ch[m-2],p[i] - ch[m-2]) <= 0) m--;
ch[m++] = p[i];
}
int k = m;
for(int i=n-2;i>=0;i--){
while(m > k && Cross(ch[m-1] - ch[m-2],p[i] - ch[m-2]) <= 0) m--;
ch[m++] = p[i];
}
if(n > 1) m--;
return m;
}
旋转卡壳
int rotating_caliper(Point* p,int n){ //求最远两点的距离的平方
int t = 1; //必须从1开始,否则边01对应的最远点在0
double ans = 0;
for(int i=0;i<n;i++){
int t1 = i, t2 = (i+1) % n; //枚举边p1p2
while(cross(p[t1] - p[t],p[t2] - p[t]) < cross(p[t1] - p[(t+1)%n],p[t2] - p[(t+1)%n]))//取等号会进入死循环(比如只有两个点)
t = (t + 1) % n;
ans = max(ans,max(dis(p[t],p[t1]),dis(p[t],p[t2])));
}
return ans;
}
半平面交
struct Line
{
Point a,b;
double ang;
void getang(){ ang = atan2(b.y - a.y,b.x - a.x);}
bool operator == (const Line& e)const{
return !dcmp(ang - e.ang);
}
bool operator < (const Line& e)const{
return ang < e.ang || !dcmp(ang - e.ang) && dcmp(Cross(b - a,e.b - a)) < 0;
}
}s[N],q[N];
bool onright(Point a,Point b,Point p){
return dcmp(Cross(b - a,p - a)) < 0;
}
int halfplaneintersection(){
for(int i=0;i<n;i++) s[i].getang();
sort(s,s+n);
int l,r;
q[l = r = 0] = s[0];
for(int i=1;i<n;i++){
if(s[i] == s[i-1]) continue;
while(l < r && onright(s[i].a,s[i].b,t[r-1])) r--;
while(l < r && onright(s[i].a,s[i].b,t[l])) l++;
q[++r] = s[i];
if(l < r) t[r-1] = intersection(q[r].a,q[r].a - q[r].b,q[r-1].a,q[r-1].a - q[r-1].b);
}
while(l < r && onright(q[l].a,q[l].b,t[r-1])) r--;
t[r] = intersection(q[l].a,q[l].a-q[l].b,q[r].a,q[r].a-q[r].b);
if(r - l <= 1) return 0; //不存在
int m = 0;
for(int i=l;i<=r;i++) p[m++] = t[i];
return m;
}
点在多边形内部
bool isPointInPolygon(Point p,Point *poly,int n){ //判断点是否在凸多边形内部
for(int i=0;i<n;i++){
double c1 = (poly[i] - poly[(i+1)%n]) ^ (p - poly[(i+1)%n]);
double c2 = (poly[(i+2)%n] - poly[(i+1)%n]) ^ (p - poly[(i+1)%n]);
if(dcmp(c1) * dcmp(c2) >= 0) return false; //等号表示点在多边形的边上
}
return true;
}