Loading

1321. 餐馆营业额变化增长 (窗口函数中 range 的使用、自连接、相关子查询)

1321. 餐馆营业额变化增长 - 力扣(LeetCode)

题目描述

表: Customer

+---------------+---------+
| Column Name   | Type    |
+---------------+---------+
| customer_id   | int     |
| name          | varchar |
| visited_on    | date    |
| amount        | int     |
+---------------+---------+
在 SQL 中,(customer_id, visited_on) 是该表的主键。
该表包含一家餐馆的顾客交易数据。
visited_on 表示 (customer_id) 的顾客在 visited_on 那天访问了餐馆。
amount 是一个顾客某一天的消费总额。

你是餐馆的老板,现在你想分析一下可能的营业额变化增长(每天至少有一位顾客)。

计算以 7 天(某日期 + 该日期前的 6 天)为一个时间段的顾客消费平均值。average_amount保留两位小数。

结果按 visited_on 升序排序

返回结果格式的例子如下。

示例 1:

输入:
Customer 表:
+-------------+--------------+--------------+-------------+
| customer_id | name         | visited_on   | amount      |
+-------------+--------------+--------------+-------------+
| 1           | Jhon         | 2019-01-01   | 100         |
| 2           | Daniel       | 2019-01-02   | 110         |
| 3           | Jade         | 2019-01-03   | 120         |
| 4           | Khaled       | 2019-01-04   | 130         |
| 5           | Winston      | 2019-01-05   | 110         | 
| 6           | Elvis        | 2019-01-06   | 140         | 
| 7           | Anna         | 2019-01-07   | 150         |
| 8           | Maria        | 2019-01-08   | 80          |
| 9           | Jaze         | 2019-01-09   | 110         | 
| 1           | Jhon         | 2019-01-10   | 130         | 
| 3           | Jade         | 2019-01-10   | 150         | 
+-------------+--------------+--------------+-------------+
输出:
+--------------+--------------+----------------+
| visited_on   | amount       | average_amount |
+--------------+--------------+----------------+
| 2019-01-07   | 860          | 122.86         |
| 2019-01-08   | 840          | 120            |
| 2019-01-09   | 840          | 120            |
| 2019-01-10   | 1000         | 142.86         |
+--------------+--------------+----------------+
解释:
第一个七天消费平均值从 2019-01-01 到 2019-01-07 是restaurant-growth/restaurant-growth/ (100 + 110 + 120 + 130 + 110 + 140 + 150)/7 = 122.86
第二个七天消费平均值从 2019-01-02 到 2019-01-08 是 (110 + 120 + 130 + 110 + 140 + 150 + 80)/7 = 120
第三个七天消费平均值从 2019-01-03 到 2019-01-09 是 (120 + 130 + 110 + 140 + 150 + 80 + 110)/7 = 120
第四个七天消费平均值从 2019-01-04 到 2019-01-10 是 (130 + 110 + 140 + 150 + 80 + 110 + 130 + 150)/7 = 142.86

解法:

方法1:窗口函数:

-- 方法1:窗口函数
select
    distinct 
    visited_on,
    amount,
    round(amount/7, 2) as average_amount 
from (
    select
        c1.visited_on,
        sum(amount) over(order by visited_on range interval 6 day preceding) as amount
    from customer c1
) t
where visited_on >=  timestampadd(day, 6, (select min(visited_on) from customer))

方法2:自连接

-- 方法2:自连接
with t as (
    select
        visited_on,
        sum(amount) as amount
    from customer
    group by visited_on
)
select
    t1.visited_on,
    sum(t2.amount) as amount,
    round(sum(t2.amount)/7, 2) as average_amount
from t t1
inner join t t2
on t2.visited_on between timestampadd(day, -6, t1.visited_on) and t1.visited_on
where t1.visited_on >= timestampadd(day, 6, (select min(visited_on) from customer))
group by t1.visited_on
order by visited_on

方法3:相关子查询(性能最差,不如自连接)

这种相关子查询的性能可能较差,因为:外层有 N 行,就要执行 N 次子查询
每次子查询都要全表扫描或索引查找

-- 方法3:相关子查询
select
    distinct
    visited_on,
    amount,
    round(amount/7, 2) as average_amount
from (
    select
        c1.visited_on,
        (
            select sum(amount)
            from customer c2
            where c2.visited_on between timestampadd(day, -6, c1.visited_on) and c1.visited_on
        ) as amount
    from customer c1
) t
where visited_on >= timestampadd(day, 6, (select min(visited_on) from customer))
order by visited_on

image

posted @ 2025-11-23 21:26  拾月凄辰  阅读(3)  评论(0)    收藏  举报