1321. 餐馆营业额变化增长 (窗口函数中 range 的使用、自连接、相关子查询)
1321. 餐馆营业额变化增长 - 力扣(LeetCode)
题目描述
表: Customer
+---------------+---------+
| Column Name | Type |
+---------------+---------+
| customer_id | int |
| name | varchar |
| visited_on | date |
| amount | int |
+---------------+---------+
在 SQL 中,(customer_id, visited_on) 是该表的主键。
该表包含一家餐馆的顾客交易数据。
visited_on 表示 (customer_id) 的顾客在 visited_on 那天访问了餐馆。
amount 是一个顾客某一天的消费总额。
你是餐馆的老板,现在你想分析一下可能的营业额变化增长(每天至少有一位顾客)。
计算以 7 天(某日期 + 该日期前的 6 天)为一个时间段的顾客消费平均值。average_amount 要 保留两位小数。
结果按 visited_on 升序排序。
返回结果格式的例子如下。
示例 1:
输入:
Customer 表:
+-------------+--------------+--------------+-------------+
| customer_id | name | visited_on | amount |
+-------------+--------------+--------------+-------------+
| 1 | Jhon | 2019-01-01 | 100 |
| 2 | Daniel | 2019-01-02 | 110 |
| 3 | Jade | 2019-01-03 | 120 |
| 4 | Khaled | 2019-01-04 | 130 |
| 5 | Winston | 2019-01-05 | 110 |
| 6 | Elvis | 2019-01-06 | 140 |
| 7 | Anna | 2019-01-07 | 150 |
| 8 | Maria | 2019-01-08 | 80 |
| 9 | Jaze | 2019-01-09 | 110 |
| 1 | Jhon | 2019-01-10 | 130 |
| 3 | Jade | 2019-01-10 | 150 |
+-------------+--------------+--------------+-------------+
输出:
+--------------+--------------+----------------+
| visited_on | amount | average_amount |
+--------------+--------------+----------------+
| 2019-01-07 | 860 | 122.86 |
| 2019-01-08 | 840 | 120 |
| 2019-01-09 | 840 | 120 |
| 2019-01-10 | 1000 | 142.86 |
+--------------+--------------+----------------+
解释:
第一个七天消费平均值从 2019-01-01 到 2019-01-07 是restaurant-growth/restaurant-growth/ (100 + 110 + 120 + 130 + 110 + 140 + 150)/7 = 122.86
第二个七天消费平均值从 2019-01-02 到 2019-01-08 是 (110 + 120 + 130 + 110 + 140 + 150 + 80)/7 = 120
第三个七天消费平均值从 2019-01-03 到 2019-01-09 是 (120 + 130 + 110 + 140 + 150 + 80 + 110)/7 = 120
第四个七天消费平均值从 2019-01-04 到 2019-01-10 是 (130 + 110 + 140 + 150 + 80 + 110 + 130 + 150)/7 = 142.86
解法:
方法1:窗口函数:
-- 方法1:窗口函数
select
distinct
visited_on,
amount,
round(amount/7, 2) as average_amount
from (
select
c1.visited_on,
sum(amount) over(order by visited_on range interval 6 day preceding) as amount
from customer c1
) t
where visited_on >= timestampadd(day, 6, (select min(visited_on) from customer))
方法2:自连接
-- 方法2:自连接
with t as (
select
visited_on,
sum(amount) as amount
from customer
group by visited_on
)
select
t1.visited_on,
sum(t2.amount) as amount,
round(sum(t2.amount)/7, 2) as average_amount
from t t1
inner join t t2
on t2.visited_on between timestampadd(day, -6, t1.visited_on) and t1.visited_on
where t1.visited_on >= timestampadd(day, 6, (select min(visited_on) from customer))
group by t1.visited_on
order by visited_on
方法3:相关子查询(性能最差,不如自连接)
这种相关子查询的性能可能较差,因为:外层有 N 行,就要执行 N 次子查询
每次子查询都要全表扫描或索引查找
-- 方法3:相关子查询
select
distinct
visited_on,
amount,
round(amount/7, 2) as average_amount
from (
select
c1.visited_on,
(
select sum(amount)
from customer c2
where c2.visited_on between timestampadd(day, -6, c1.visited_on) and c1.visited_on
) as amount
from customer c1
) t
where visited_on >= timestampadd(day, 6, (select min(visited_on) from customer))
order by visited_on


浙公网安备 33010602011771号