传送门
题目大意
一个圆含有内接\(\bigtriangleup ABC\),圆的半径为r,然后给出一个等式 \(\eta =tanA/2*tanB/2+tanB/2*tanC/2+tanA/2*tanC/2+sinA*r\),求 \(\eta\)的最大值。
思路
看到这种题目,肯定要先去化简一下表达式。首先观察等式,当A=\(\frac{\pi }{2}\) 时,sinA=1,所以现在要做的就是把前面的一堆东西化掉。
tanB/2=tan(\(\pi\)-A-C)/2=tan(\(\pi\)/2-(A+C)/2)=cot(A+C)/2
\(\because\)tan(A+B)=(tanA+tanB)/(1-tanA*tanB)
\(\therefore\)cot(A+B)=1/tan(A+B)=(1-tanA*tanB)/(tanA+tanB)
\(\therefore\)tanB/2=(1-tanA/2*tanC/2)/(tanA/2+tanC/2)
\(\therefore\)tanA/2*tanB/2+tanB/2*tanC/2+tanA*tanC/2
=tanB/2*(tanA/2+tanC/2)+tanA*tanC/2
=(1-tanA/2*tanC/2)/(tanA/2+tanC/2)*(tanA/2+tanC/2)+tanA*tanC/2
=1-tanA/2*tanC/2+tanA*tanC/2
=1
\(\therefore\) \(\eta\)=r+1
代码
#include<bits/stdc++.h>
using namespace std;
int main(){
double r;
scanf("%lf",&r);
printf("%.2f",r+1.00);
return 0;
}