Minimum Path Sum
Description
Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.
You can only go right or down in the path..
Example
Example 1: Input: [[1,3,1],[1,5,1],[4,2,1]] Output: 7 Explanation: Path is: 1 -> 3 -> 1 -> 1 -> 1 Example 2: Input: [[1,3,2]] Output: 6 Explanation: Path is: 1 -> 3 -> 2
思路:Dp[i][j] 存储从(0, 0) 到(i, j)的最短路径。
Dp[i][j] = min(Dp[i-1][j]), Dp[i][j-1]) + grid[i][j];
public class Solution {
/**
* @param grid: a list of lists of integers
* @return: An integer, minimizes the sum of all numbers along its path
*/
public int minPathSum(int[][] grid) {
if (grid == null || grid.length == 0 || grid[0].length == 0) {
return 0;
}
int M = grid.length;
int N = grid[0].length;
int[][] sum = new int[M][N];
sum[0][0] = grid[0][0];
for (int i = 1; i < M; i++) {
sum[i][0] = sum[i - 1][0] + grid[i][0];
}
for (int i = 1; i < N; i++) {
sum[0][i] = sum[0][i - 1] + grid[0][i];
}
for (int i = 1; i < M; i++) {
for (int j = 1; j < N; j++) {
sum[i][j] = Math.min(sum[i - 1][j], sum[i][j - 1]) + grid[i][j];
}
}
return sum[M - 1][N - 1];
}
}
可以使用滚动数组进行优化。
public class Solution {
/**
* @param grid: a list of lists of integers
* @return: An integer, minimizes the sum of all numbers along its path
*/
public int minPathSum(int[][] A) {
if (A == null || A.length == 0 || A[0].length == 0) {
return 0;
}
int m = A.length, n = A[0].length;
int[][] f = new int[2][n];
int i, j;
int old, now = 0; // f[i] is stored in rolling array f[0]
for (i = 0; i < m; ++i) {
old = now;
now = 1 - now; // 0 --> 1, 1 --> 0
for (j = 0; j < n; ++j) {
if (i == 0 && j == 0) {
f[now][j] = A[0][0];
continue;
}
f[now][j] = Integer.MAX_VALUE;
if (i > 0) {
f[now][j] = Math.min(f[now][j], f[old][j]);
}
if (j > 0) {
f[now][j] = Math.min(f[now][j], f[now][j - 1]);
}
f[now][j] += A[i][j];
}
}
return f[now][n - 1];
}
}

浙公网安备 33010602011771号