Max Tree
Description
Given an integer array with no duplicates. A max tree building on this array is defined as follow:
- The root is the maximum number in the array
- The left subtree and right subtree are the max trees of the subarray divided by the root number.
Construct the max tree by the given array.
思路:利用数组实现基本数据结构的调整,当前遍历到的数字比stack中的最后一个大时,将stk中的最后一个数字转变为当前节点的左子树,循环调整至stack为空或者stack中的最后节点值大于新节点的值。如果stack不为空,说明stack中的最后一个节点值大于新节点值,则将新节点设为stack中的最后一个节点的右子树,将新节点存入stack。
public class Solution {
/**
* @param A
* : Given an integer array with no duplicates.
* @return: The root of max tree.
*/
public static TreeNode maxTree(int[] A) {
// write your code here
Stack<TreeNode> stack = new Stack<TreeNode>(); //申请栈存放节点
TreeNode root = null;
for (int i = 0; i <= A.length; i++) {
TreeNode right = i == A.length ? new TreeNode(Integer.MAX_VALUE) //如果i==length,新建节点设置值为无穷大,否则值为A[i]
: new TreeNode(A[i]);
while (!stack.isEmpty()) { //如果栈不为空
if (right.val > stack.peek().val) { //如果新建节点的值比栈顶大
TreeNode nodeNow = stack.pop(); //临时保存栈顶节点并弹出
if (stack.isEmpty()) { //如果栈为空
right.left = nodeNow; //临时保存的栈顶的节点是当前新建节点的左子树
} else {
TreeNode left = stack.peek();
if (left.val > right.val) {
right.left = nodeNow; //新建节点的左子树为临时保存节点
} else {
left.right = nodeNow; //当前栈顶的节点的右子树为新建节点
}
}
} else
break;
}
stack.push(right); //将新建节点压入栈中
}
return stack.peek().left;
}
}

浙公网安备 33010602011771号