Flink数据倾斜问题

这里我们使用两阶段keyby 解决该问题
之前的问题如下图所示

我们期望的是

但我们的需要根据key进行聚合统计,那么把相同的key放在不同的subtask如何统计?
我们看下图(只画了主要部分)
1.首先将key打散,我们加入将key转化为 key-随机数 ,保证数据散列
2.对打散后的数据进行聚合统计,这时我们会得到数据比如 : (key1-12,1),(key1-13,19),(key1-1,20),(key2-123,11),(key2-123,10)
3.将散列key还原成我们之前传入的key,这时我们的到数据是聚合统计后的结果,不是最初的原数据
4.二次keyby进行结果统计,输出到addSink
 
 
 
import org.apache.flink.api.common.functions.AggregateFunction
import org.apache.flink.api.common.state.{ValueState, ValueStateDescriptor}
import org.apache.flink.api.java.tuple.Tuple
import org.apache.flink.api.scala.typeutils.Types
import org.apache.flink.streaming.api.functions.KeyedProcessFunction
import org.apache.flink.streaming.api.functions.windowing.WindowFunction
import org.apache.flink.streaming.api.scala._
import org.apache.flink.streaming.api.windowing.time.Time
import org.apache.flink.streaming.api.windowing.windows.TimeWindow
import org.apache.flink.util.Collector
 
object ProcessFunctionScalaV2 {
 
 
  def main(args: Array[String]): Unit = {
    val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment
    env.enableCheckpointing(2000)
    val stream: DataStream[String] = env.socketTextStream("localhost", 9999)
    val typeAndData: DataStream[(String, Long)] = stream.map(x => (x.split(",")(0), x.split(",")(1).toLong))
    val dataStream: DataStream[(String, Long)] = typeAndData
      .map(x => (x._1 + "-" + scala.util.Random.nextInt(100), x._2))
    val keyByAgg: DataStream[DataJast] = dataStream.keyBy(_._1)
      .timeWindow(Time.seconds(10))
      .aggregate(new CountAggregate())
    keyByAgg.print("第一次keyby输出")
    val result: DataStream[DataJast] = keyByAgg.map(data => {
      val newKey: String = data.key.substring(0, data.key.indexOf("-"))
      println(newKey)
      DataJast(newKey, data.count)
    }).keyBy(_.key)
      .process(new MyProcessFunction())
    result.print("第二次keyby输出")
 
 
    env.execute()
  }
 
  case class DataJast(key :String,count:Long)
 
  //计算keyby后,每个Window中的数据总和
  class CountAggregate extends AggregateFunction[(String, Long),DataJast, DataJast] {
 
    override def createAccumulator(): DataJast = {
      println("初始化")
      DataJast(null,0)
    }
 
    override def add(value: (String, Long), accumulator: DataJast): DataJast = {
      if(accumulator.key==null){
        printf("第一次加载,key:%s,value:%d\n",value._1,value._2)
        DataJast(value._1,value._2)
      }else{
        printf("数据累加,key:%s,value:%d\n",value._1,accumulator.count+value._2)
        DataJast(value._1,accumulator.count + value._2)
      }
    }
 
    override def getResult(accumulator: DataJast): DataJast = {
      println("返回结果:"+accumulator)
      accumulator
    }
 
    override def merge(a: DataJast, b: DataJast): DataJast = {
      DataJast(a.key,a.count+b.count)
    }
  }
 
 
  /**
   * 实现:
   *    根据key分类,统计每个key进来的数据量,定期统计数量
   */
  class MyProcessFunction extends  KeyedProcessFunction[String,DataJast,DataJast]{
 
    val delayTime : Long = 1000L * 30
 
    lazy val valueState:ValueState[Long] = getRuntimeContext.getState[Long](new ValueStateDescriptor[Long]("ccount",classOf[Long]))
 
    override def processElement(value: DataJast, ctx: KeyedProcessFunction[String, DataJast, DataJast]#Context, out: Collector[DataJast]): Unit = {
      if(valueState.value()==0){
        valueState.update(value.count)
        printf("运行task:%s,第一次初始化数量:%s\n",getRuntimeContext.getIndexOfThisSubtask,value.count)
        val currentTime: Long = ctx.timerService().currentProcessingTime()
        //注册定时器
        ctx.timerService().registerProcessingTimeTimer(currentTime + delayTime)
      }else{
        valueState.update(valueState.value()+value.count)
        printf("运行task:%s,更新统计结果:%s\n" ,getRuntimeContext.getIndexOfThisSubtask,valueState.value())
      }
    }
 
    override def onTimer(timestamp: Long, ctx: KeyedProcessFunction[String, DataJast, DataJast]#OnTimerContext, out: Collector[DataJast]): Unit = {
      //定时器执行,可加入业务操作
      printf("运行task:%s,触发定时器,30秒内数据一共,key:%s,value:%s\n",getRuntimeContext.getIndexOfThisSubtask,ctx.getCurrentKey,valueState.value())
 
      //定时统计完成,初始化统计数据
      valueState.update(0)
      //注册定时器
      val currentTime: Long = ctx.timerService().currentProcessingTime()
      ctx.timerService().registerProcessingTimeTimer(currentTime + delayTime)
    }
  }
 
 
 
}
对key进行散列
 val dataStream: DataStream[(String, Long)] = typeAndData
      .map(x => (x._1 + "-" + scala.util.Random.nextInt(100), x._2))
设置窗口滚动时间,每隔十秒统计一次每隔key下的数据总量
 val keyByAgg: DataStream[DataJast] = dataStream.keyBy(_._1)
      .timeWindow(Time.seconds(10))
      .aggregate(new AverageAggregate())
    keyByAgg.print("第一次keyby输出")
还原key,并进行二次keyby,对数据总量进行累加
 val result: DataStream[DataJast] = keyByAgg.map(data => {
      val newKey: String = data.key.substring(0, data.key.indexOf("-"))
      println(newKey)
      DataJast(newKey, data.count)
    }).keyBy(_.key)
      .process(new MyProcessFunction())
                    
                
                
            
        
浙公网安备 33010602011771号