实分析课堂笔记 Chapter 2. 可测函数

Chapter 2. 可测函数

2.1 可测函数

Definition 2.1(原像) 给定映射 \(f: X\rightarrow Y\),它诱导了原像映射

\[f^{-1}: 2^X\rightarrow 2^Y, f^{-1}(E) = \{x\in X, f(x)\in E\}. \]

Remark 2.2

\[\begin{aligned} f^{-1}(\bigcup_{\lambda}E_\lambda) &= \bigcup_\lambda f^{-1}(E_\lambda) \\ f^{-1}(\bigcap_{\lambda}E_\lambda) &= \bigcap_\lambda f^{-1}(E_\lambda) \\ f^{-1}(E^c) &= [f^{-1}(E)]^c \\ \mathcal{N} \text{ is a }\sigma\text{-algebra on }Y&\Rightarrow f^{-1}(\mathcal{N}) \text{ is a }\sigma\text{-algebra on }X. \end{aligned} \]

Definition 2.3($(\mathcal{M,N}) $-可测函数)\((X,\mathcal{M}), (Y,\mathcal{N})\) 是可测空间,称 \(f: X\rightarrow Y\)\((\mathcal{M}, \mathcal{N})\)-可测函数如果 \(\forall E\in \mathcal{N}, f^{-1}(E)\in\mathcal{M}\)

Remark 2.4 可测函数的复合仍为可测函数。

Proposation 2.5\(\mathcal{N} = \mathcal{M(E)}\),则 \(f: X\rightarrow Y\)\((\mathcal{M,N})\)-可测函数如果 \(\forall E\in \mathcal{E}, f^{-1}(E)\in \mathcal{M}\)

Proof:\(\Rightarrow\):显然。

\(\Leftarrow\)\(\{E\subset Y: f^{-1}(E)\in \mathcal{M}\}\) 是包含 \(\mathcal{E}\)\(\sigma\)-代数。

Corollary 2.6\((X,\tau_1)\)\((Y,\tau_2)\) 是拓扑空间,则若 \(f:X\rightarrow Y\) 连续,则 \(f\)\((\mathcal{B}_X,\mathcal{B}_Y)\)-可测函数。

Proof:\(\mathcal{B}_Y = \mathcal{M}(\tau_2)\),且 \(\forall U\in \tau_2, f^{-1}(U)\in \tau_1\subset \mathcal{B}_X\)。由 Proposation 2.5 立即可得。

Definition 2.7(\(\mathcal{M}\)-可测函数)若 \((X,\mathcal{M})\) 是可测空间,则称 \(f: X\rightarrow \mathbb{R}(\mathbb{C})\)\(\mathcal{M}\)-可测函数如果 \(f\)\((\mathcal{M}, \mathcal{B}_\mathbb{R})\)-可测函数。

Example 2.8 \(f: \mathbb{R}\rightarrow \mathbb{C}\) 是勒贝格可测的如果 \(f\)\((\mathcal{L}, \mathcal{B}_\mathbb{C})\)-可测的。

Remark 2.9 \(f\circ g: \mathbb{R}\rightarrow \mathbb{R}\) 是 Borel 可测的,如果 \(f\)\(g\) 都是 Borel 可测的;但 \(f\circ g\) 不一定是 Lebesgue 可测的,如果 \(f\)\(g\) 都是 Lebesgue 可测的。

Proposation 2.10 给定可测空间 \((X,\mathcal{M})\) 和函数 \(f: X\rightarrow \mathbb{R}\),则以下等价:

  • \(f\)\(\mathcal{M}\)-可测的

  • \(f^{-1}((a,\infty))\in \mathcal{M}, \forall a\in \mathbb{R}\)

  • \(f^{-1}([a,\infty))\in \mathcal{M}, \forall a\in \mathbb{R}\)

Proof:1 推 2、3 显然;若 2 或 3 成立,因为 \(\mathcal{M}(\{(a,\infty):a\in\mathbb{R}\}) = \mathcal{B}_\mathbb{R}\),所以 1 成立。

Definition 2.11

  • \(f: X\rightarrow \mathbb{R}, E\in \mathcal{M}\subset 2^X\),则称 \(f\)\(E\) 上可测(等价于 \(f\) \(\mathcal{M}_E\)-可测)如果 \(f^{-1}(B\cap E)\in \mathcal{M}, \forall B\in \mathcal{B}_\mathbb{R}\)

  • 给定 \(X\),集合列 \(\{(Y_\alpha, \mathcal{N}_\alpha)\}_{\alpha\in A}\) 和函数列 \(f_\alpha: X\rightarrow Y_\alpha\),则称 \(\{f_\alpha\}\) 生成的最小 \(\sigma\)-代数为由 \(\{f_{\alpha}^{-1}(E_\alpha): E_\alpha\in \mathcal{N}_\alpha, \alpha\in A\}\) 生成的 \(\sigma\)-代数。

Remark 2.12\(X = \prod_{\alpha\in A}Y_\alpha\),则 \(X\) 上的乘积 \(\sigma\)-代数 \(\otimes_{\alpha\in A}\mathcal{N}_\alpha\) 是由投影映射 \(\{\pi_\alpha: X\rightarrow Y_\alpha|\alpha\in A\}\) 生成的最小 \(\sigma\)-代数。

Proposation 2.13 给定 \((X,\mathcal{M}), \{(Y,\mathcal{N}_\alpha)\}_{\alpha\in A}\),若 \(Y = \prod_{\alpha\in A}Y_\alpha, \mathcal{N} = \otimes_{\alpha\in A} \mathcal{N}_\alpha\),则 \(f: X\rightarrow Y\)\((\mathcal{M,N})\)-可测的当且仅当对所有 \(\alpha\)\(f_\alpha\)\((\mathcal{M,N_\alpha})\)-可测的。

Proof:\(\Rightarrow\):显然;

\(\Leftarrow:\)因为 \(f_\alpha\) 可测,所以对任意 \(E_\alpha\in \mathcal{N}_\alpha\)\(f^{-1}(\pi_\alpha^{-1}(E_\alpha))\in \mathcal{M}\)

又因为 \(\mathcal{N} = \mathcal{M}(\{\pi_\alpha^{-1}(E_\alpha): E_\alpha\in \mathcal{N}_\alpha, \alpha\in A\})\),所以 \(f\) 是可测函数。

Corollary 2.14 \(f: X\rightarrow \mathbb{C}\)\(\mathcal{M}\)-可测的当且仅当 \(\mathrm{Re}f\)\(\mathrm{Im}f\) 都是 \(\mathcal{M}\)-可测的。

Definition 2.15(广义实数)\(\overline{\mathbb{R}} = [-\infty,+\infty]\)。定义 \(\mathcal{B}_\mathbb{R} = \{E\subset \overline{\mathbb{R}}: E\cap \mathbb{R}\in \mathcal{B}_\mathbb{R}\}\)。称 \(f: X\rightarrow \overline{\mathbb{R}}\)\(\mathcal{M}\)-可测的如果 \(f\)\((\mathcal{M}, \mathcal{B}_\overline{\mathbb{R}})\)-可测的。

Remark 2.16 \(f:X\rightarrow\overline{\mathbb{R}}\) 是可测的当且仅当 \(f^{-1}(\{\pm\infty\})\in \mathcal{M}\)\(f\)\(f^{-1}(\mathbb{R})\) 上可测。

Proposation 2.17\(f,g: X\rightarrow \mathbb{C}\)\(\mathcal{M}\)-可测的,则 \(f+g,f-g,fg,f/g\) 可测。

Proof:乘积空间的函数可测,四则运算可测,故复合可测。

Remark 2.18 上面的结论对 \(f: X\rightarrow \overline{\mathbb{R}}\) 也成立。

Proposation 2.19\(\forall j\in \mathbb{N}, f_j: X\rightarrow \overline{\mathbb{R}}\) 可测,则

\[g_1(x) = \sup_j f_j(x), g_2(x) = \inf_j f_j(x), g_3(x) = \limsup_j f_j(x), g_4(x) = \liminf_j f_j(x) \]

都可测。

Proof:因为 \(g_1^{-1}((a,\infty]) = \cup_j f_j^{-1}((a,\infty])\),所以 \(g_1\) 可测;

因为 \(\inf_j f_j = \sup_j (-f_j)\),所以 \(g_2\) 可测。

因为 \(\limsup_j f_j = \inf_k\sup_{j\leq k}f_j\),所以 \(g_3,g_4\) 可测。

Corollary 2.20

  • \(f,g: X\rightarrow \overline{\mathbb{R}}\) 可测,则 \(\max\{f,g\},\min\{f,g\}\) 均可测。
  • \(f_j: X\rightarrow C\) 可测,且 \(f(x) = \lim_{j\rightarrow \infty} f_j(x), \forall x\in X\) 存在,则 \(f\) 可测。

Definition 2.21(正部和负部)\(f: X\rightarrow \overline{\mathbb{R}}, f^+(x) = \max\{f(x),0\}, f^-(x) = \max\{-f(x),0\}\)。且 \(f = f^+ - f^-\)

Definition 2.22(极坐标分解)\(f: X\rightarrow \mathbb{C}\),则其极坐标分解为 \(f = (\text{sgn} f)|f|\),其中

\[\text{sgn}z = \begin{cases} \frac z{|z|}, & z\neq 0 \\ 0, & z=0 \\ \end{cases} \]

Remark 2.23\(f: X\rightarrow \mathbb{C}\) 可测,则 \(\text{sgn}f, |f|\) 可测。

Definition 2.24(特征函数)\(E\subset X\),定义其特征函数为

\[\chi_E(x) = \begin{cases} 1, & x\in E, \\ 0, & x\notin E. \end{cases} \]

Definition 2.25(简单函数)\(f: X\rightarrow \mathbb{C}\),称 \(f\) 是简单函数如果

\[f(x) = \sum_{j=1}^\infty z_j\chi_{E_j}, E_j\in \mathcal{M}, Z_j\in \mathbb{C}, z_j\neq z_k\forall j\neq k. \]

Remark 2.26

  • \(\chi_E\) 可测当且仅当 \(E\in \mathcal{M}\)
  • \(f,g\) 是简单函数 \(\Rightarrow f\pm g, fg\) 是简单函数。

Theorem 2.27 给定测度空间 \((X,\mathcal{M})\)

(1)若 \(f: X\rightarrow [0,\infty]\) 可测,则存在简单函数 \(\{\phi_n\}\) 使得 \(0\leq \phi_1\leq \dots\leq \phi_n\leq f\),且 \(\phi_n\) 点态收敛于 \(f\);进一步地,若 \(f\) 有界,则 \(\phi_n\) 一致收敛于 \(f\)

(2)若 \(f: X\rightarrow \mathbb{C}\) 可测,则存在简单函数 \(\{\phi_n\}\) 使得 \(0\leq |\phi_1|\leq \dots\leq |\phi_n|\leq |f|\),且 \(\phi_n\) 点态收敛于 \(f\);进一步地,若 \(|f|\) 有界,则 \(\phi_n\) 一致收敛于 \(f\)

Proof:(1)定义

\[\phi_n = \sum_{k=0}^{2^{2n}-1}k2^{-n}\chi_{E_n^k} + 2^n\chi_{F_n} \]

其中 \(E_n^k = f^{-1}((k2^{-n},(k+1)2^{-n}]), F_n = f^{-1}((2^n,\infty])\)

\(\phi_n\) 单调增且 \(0\leq f-\phi_n\leq 2^{-n}, \forall f\leq 2^n\)

(2)设 \(f = g+ih,\)。其中 \(g,h: X\rightarrow \mathbb{R}\)。将(1)应用于 \(g^{\pm},h^{\pm}\) 得到 \(\{\varphi_n^\pm\},\{\psi_n^{\pm}\}\)。令

\[\phi_n = (\varphi_n^+ - \varphi_n^-) + i(\psi_n^+ - \psi_n^-), \]

\(\{\phi_n\}\) 满足条件。

Remark 2.28 给定 \((X,\mathcal{M},\mu)\),其中 \(\mu\) 是完备测度,则

(1)若 \(f\) 可测,\(f=g\quad \mu-\text{a.e.}\),则 \(g\) 可测。

(2)若 \(\forall n\in \mathbb{N}\)\(f_n\) 可测,且 \(f_n\rightarrow f\quad \text{a.e.}\),则 \(f\) 可测。

Proposation 2.29 给定 \((X,\mathcal{M},\mu)\),其完备化为 \((X,\overline{\mathcal{M}},\overline{\mu})\),若 \(f\)\(\overline{\mathcal{M}}\) 可测的,则存在 \(\mathcal{M}\) 可测的函数 \(g\) 满足 \(f=g\quad \overline{\mu}-\text{a.e.}\)

Proof:\(f = \chi_E, E\in \overline{\mathcal{M}}\) 时显然。因此性质对简单函数也成立。

\(f\) 可测,则存在 \(\overline{\mathcal{M}}\) 可测简单函数列 \(\{\phi_n\}\) 满足 \(\phi_n\rightarrow f\)

\(\psi_n\)\(\mathcal{M}\) 可测简单函数列且 \(\psi_n = \phi_n\)\(X\backslash E_n, \overline{\mu}(E_n) = 0\) 上成立。

选取 \(N\in \mathcal{M}\) 使得 \(\mu(N) = 0, \cup_n E_n\subset N, \overline{\mu}(E_n) = 0\)

\(g = \lim_{n\rightarrow \infty} \chi_{X\backslash N}\psi_n\),则 \(g\) 可测且 \(g=f\)\(N^c\) 上成立。

2.2 非负函数的积分

Definition 2.30(非负可测函数)给定测度空间 \((X,\mathcal{M},\mu)\),定义

\[\mathcal{L}^+ := \{可测函数 f: X\rightarrow [0,\infty]\} \]

Definition 2.31(简单函数的积分)\(\phi\in \mathcal{L}^+, \phi = \sum_{i=1}^n \phi_i\chi_{E_i}\) 为简单函数,则定义

\[\int\phi d\mu = \int_X\phi d\mu = \sum_{i=1}^n\phi_i\mu(E_i). \]

Remark 2.32

  • 规定 \(0\cdot\infty = 0\)
  • 简写 \(\int \phi = \int\phi d\mu\)
  • \(A\in \mathcal{M}\)\(\phi\chi_A\) 是简单函数,则定义 \(\int_A\phi d\mu = \int \phi\chi_Ad\mu\)

Proposation 2.33\(\phi,\psi\)\(\mathcal{L}^+\) 上简单函数,则

  • \(c\geq 0\),则定义 \(\int c\phi = c\int \phi\)
  • \(\int (\phi + \psi) = \int\phi + \int\psi\)
  • \(\phi\leq \psi\),则 \(\int\phi \leq \int\psi\)
  • \(A\mapsto \int_A\phi d\mu\)\(\mathcal{M}\) 上的测度。

Proof:(1)由定义,显然。

(2)设 \(\int_\phi = \sum_{i=1}^n a_i\mu(E_i), \int\psi = \sum_{j=1}^m b_j\mu(F_j)\)

\(E_i = \cup_{k=1}^m (E_i\cap F_k), F_j = \cup_{k=1}^n (F_j\cap E_k)\) 无交。因此

\[\begin{aligned} &\int\phi + \int\psi\\ =& \sum_{i=1}^n\sum_{k=1}^ma_i\mu(E_i\cap F_k) + \sum_{j=1}^m\sum_{k=1}^n b_j\mu(F_j\cap E_k)\\ =& \sum_{j,k} (a_j+b_k)\mu(E_j\cap F_k)\\ =& \int(\phi+\psi). \end{aligned} \]

(3)因为 \(\phi\leq \psi\),所以 \(\forall E_j\cap F_k\neq \emptyset, a_j\leq b_k\)。所以

\[\int\phi = \sum_{j,k} a_i\mu(E_i\cap F_k)\leq \sum_{j,k}b_k\mu(E_i\cap F_k) = \int\psi. \]

(4)若 \(\{A_k\}\subset \mathcal{M}\)\(A = \cup_{k=1}^\infty A_k\) 是无交并,定义 \(\nu(A) = \int_A\phi\),则

\[\nu(A) = \int_A\phi = \sum_ja_j\mu(A\cap E_j) = \sum_{j,k}a_j\mu(A_k\cap E_j) = \sum_k\int_{A_k}\phi = \sum_k\nu(A_k) \]

因此 \(\nu\) 是测度。

Definition 2.34(非负可测函数的积分)\(f: \mathcal{L}^+\),定义

\[\int fd\mu = \sup\{\int\phi d\mu: 0\leq \phi\leq \mu, \phi为简单函数\}. \]

Remark 2.35

  • \(f\) 是简单函数,则上述定义显然是良定义。
  • \(\int f\leq \int g, \forall f\leq g\),且 \(\int cf = c\int f, \forall c\in [0,\infty]\)

Theorem 2.36(单调收敛定理,MCT)\(\{f_n\}\subset \mathcal{L}^+\) 满足 \(f_j\leq f_{j+1}, \forall j\),且 \(f = \lim_{n\rightarrow \infty} f_n\),则 \(\int f = \lim_{n\rightarrow \infty} \int f_n\)

Proof:\(\{f_n\}\)\([0,\infty]\) 上的单调函数且极限在 \([0,\infty]\)

\(\int f_n\leq \int f, \forall n \Rightarrow \lim_{n\rightarrow \infty}\int f_n\leq \int f\)

若给定 \(\alpha\in (0,1)\) 和简单函数 \(\phi\) 使得 \(0\leq \phi\leq f\),定义 \(E_n = \{x: f_n(x)\geq \alpha\phi(x)\}\),则 \(E_n\) 单调递增且 \(\cup_{n=1}^\infty E_n = X\)

因此 \(\int f_n\geq \int_{E_n}f_n\geq \alpha\int_{E_n}\phi\)。由 Proposation 2.33(4)可得 \(\int_{E_n}\phi\) 是一个测度 \(\nu(E_n)\)。再由连续性得 \(\lim_{n\rightarrow \infty} \nu(E_n) = \int_E\phi\)

\(n\rightarrow \infty\),则 \(\lim_{n\rightarrow \infty}\int f_n\geq \alpha\int_E\phi, \forall \alpha<1\)。令 \(\alpha\rightarrow 1\) 得结论成立。

Remark 2.37 为什么用 \(\alpha\phi\) 而不是 \(\phi - \epsilon\)?因为 \(\int_{E_n}(\phi-\epsilon)\) 可能是 \(-\infty\)

Theorem 2.38\(\{f_n\}\subset \mathcal{L}^+, f = \sum_n f_n\),则 \(\int f = \sum_{n=1}^\infty \int f_n\)

Proof:\(f_1,f_2\in \mathcal{L}^+\),存在简单函数列 \(\{\phi_j\}, \{\psi_j\}\in \mathcal{L}^+\) 使得 \(\phi_j\rightarrow f_1, \psi_j\rightarrow f_2\),因此 \(\phi_j + \psi_j \rightarrow f_1 + f_2\),因此

\[\int(f_1+f_2) = \lim_{j\rightarrow \infty} \int(\phi_j + \psi_j) = \lim_{j\rightarrow \infty}\int\phi_j + \lim_{j\rightarrow \infty}\int \psi_j = \int f_1 + \int f_2. \]

Proposation 2.39\(f\in \mathcal{L}^+\),则 \(\int f = 0 \Rightarrow f=0,\quad \text{a.e.}\)

Proof:\(f\) 是简单函数,显然;

"\(\Leftarrow\)":若 \(f=0,\quad \text{a.e.}\),则对任意简单函数 \(\phi\)\(0\leq \phi\leq f\),则 \(\phi=0\quad \text{a.e.}\),则 \(\int\phi = 0\)。因此 \(\int f = 0\)

"\(\Rightarrow\)":令 \(E_n = \{x: f(x) > \frac 1n\}\),则 \(\cup_n E_n = \{x: f(x)\neq 0\}\)

\(f=0\quad \text{a.e.}\) 不成立,则存在 \(E_n\) 使得 \(\mu(E_n) > 0\)

\(\int f\geq \int_{E_n}f\geq \frac 1n\int_{E_n}1 = \frac 1n\mu(E_n)>0\),矛盾!所以 \(f=0\quad \text{a.e.}\)

Corollary 2.40\(\{f_n\}\subset \mathcal{L}^+, f\in \mathcal{L}^+\)\(f_n\rightarrow f \quad \text{a.e.}X\),则 \(\int f = \lim_{n\rightarrow \infty}\int f_n\)

Proof:由题意,存在 \(E\)\(\mu(E^c) = 0, f_n\rightarrow f, \forall x\in E\)

\(f - f\chi_E = 0, \quad \text{a.e.}\)\(f_n - f_n\chi_E = 0, \quad \text{a.e.}\)。因此

\[\int f = \int f\chi_E = \lim_{n\rightarrow\infty}\int f_n\chi_E = \lim_{n\rightarrow \infty}\int f_n. \]

Theorem 2.41(Fatou 引理)\(\{f_n\}\subset \mathcal{L}^+\),则

\[\int\underline{\lim}\limits_{n\rightarrow\infty} f_n\leq \underline{\lim}\limits_{n\rightarrow \infty}\int f_n. \]

Proof:对任意 \(k\geq 1\),因为 \(\int_{n\geq k}f_n\leq f_j, \forall j\geq k\),所以 \(\int \inf_{n\geq k} f_n\leq \int f_j, \forall j\geq k\)

所以 \(\int \inf_{n\geq k} f_n \leq \inf_{j\geq k}\int f_j\)。所以

\[\int\underline{\lim}\limits_{n\rightarrow\infty} f_n = \int\lim_{k\rightarrow \infty}\inf_{n\geq k}f_n = \lim_{k\rightarrow \infty}\int\inf_{n\geq k} f_n\leq \lim_{k\rightarrow \infty}\inf_{n\geq k}\int f_n = \underline{\lim}\limits_{n\rightarrow \infty}\int f_n. \]

Remark 2.42 严格不等号的例子:

  • \(f_n(x) = \chi_{[n,n+1]}\)
  • \(f_n(x) = n\chi_{[0,\frac 1n]}\)

2.3 实值和复值函数的积分

Definition 2.43(实可积)给定测度空间 \((X,\mathcal{M},\mu)\)\(f: X\rightarrow \overline{\mathbb{R}}\),定义 \(\int f = \int f^+ - \int f^-\)。称 \(f\) 可积如果 \(\int f^+, \int f^- < \infty \Leftrightarrow \int |f| < \infty\)

Proposation 2.44 全体 \(X\) 中实值可积函数构成实线性空间,且积分是该空间上的线性泛函。

Proof:(1)因为 \(|af + bg| \leq |a||f| + |b||g|\),所以 \(f,g\) 可积 \(\Rightarrow\) \(af+bg\) 可积。

(2)\(\int \alpha f = \alpha\int f\)

(3)若 \(f,g\) 可积,\(h = f+g\),则

\[h^+ - h^- = f^+ - f^- + g^+ - g^-\Rightarrow h^+ + f^- + g^- = h^- + g^+ + f^+. \]

所以 \(\int h^+ + \int f^- + \int g^- = \int h^- + \int f^+ + \int g^+\),故 \(\int h = \int f + \int g\)

Definition 2.45(复可积)\(f: X\rightarrow \mathbb{C}\) 可测。称 \(f\) 复可积如果 \(\int |f| < \infty\)。若 \(E\in \mathcal{M}\),称 \(f\)\(E\) 上可积如果 \(\int_E |f| < \infty\)

Remark 2.46 因为 \(|f|\leq |\text{Re}f| + |\text{Im}f|\leq 2|f|\),所以 \(f\) 可积 \(\Leftrightarrow\) \(\text{Re}f, \text{Im}f\) 可积。

Definition 2.47(复积分)\(f: X\rightarrow \mathbb{C}\) 可积,则定义 \(\int f = \int \text{Re}f + i\int \text{Im}f\)

Definition 2.48(复可积空间)全体复可积函数构成的空间称为 \(\mathcal{L}^1(\mu) = \mathcal{L}^1(X,\mu) = \mathcal{L}^1(X)\)

Proposation 2.49 \(f\in \mathcal{L}^1\Rightarrow |\int f|\leq \int|f|\)

Proof:\(\int f=0\),显然;

\(f\) 是实值函数,则 \(|\int f| = |\int f^+ - \int f^-| \leq \int f^+ + \int f^- = \int|f|\)

\(f\) 是复值函数,令 \(\alpha = \overline{\text{sgn}(\int f)}\),则

\[|\int f| = \alpha\int f = \text{Re}(\alpha\int f) = \int\text{Re}(\alpha f) \leq \int|\text{Re}(\alpha f)\leq |f|. \]

Proposation 2.50(1)\(f\in \mathcal{L}^1\Rightarrow \{x: f(x)\neq 0\}\)\(\sigma-\) 有限集。

(2)若 \(f,g\in \mathcal{L}^1\),则下列三者等价。

  • \(\int_E f = \int_E g, \forall E\in \mathcal{M}\)
  • \(\int |f-g| = 0\)
  • \(f = g, \quad \text{a.e.}\)

Proof:(1)若 \(f\in \mathcal{L}^+\),则 \(\{f>0\}\)\(\sigma-\) 有限的。

\(f\in \mathcal{L}^1\),则 \(\{x: f(x)\neq 0\} = \{\text{Re}f\neq 0\}\cup\{\text{Im}f\neq 0\}\)\(\sigma-\) 有限的。

(2)\(|f-g|\geq 0\),则 \(\int |f-g| = 0\Leftrightarrow |f-g|=0, \text{a.e.}\Rightarrow f=g,\text{a.e.}\)。所以 (b)(c) 等价。

(b)\(\Rightarrow\)(a):若 \(\int |f-g| = 0\),则 \(|\int_E f - \int_E g| = |\int \chi_E(f-g)| \leq \int|\chi_E(f-g)| \leq \int |f-g| = 0\) 所以 \(\int_E f = \int_E g\)

(a)\(\Rightarrow\)(c):若 \(\mu\{x: f(x)\neq g(x)\}\neq 0\),令 \(u := \text{Re}(f-g), v := \text{Im}(f-g)\),则 \(u^\pm, v^\pm\) 在某些 \(E, \mu(E) > 0\) 上非零。令 \(E = \{u^+ > 0\}\),则 \(\text{Re}(\int_E f - \int_E g) = \int_E u^+ > 0\),矛盾。

Remark 2.51

  • 零测集对积分没有影响。
  • 几乎处处有限的广义实值函数可被视为是有限市值函数。

Theorem 2.52(控制收敛定理,DCT)\(\{f_n\}\) 满足 \(f_n\rightarrow f,\text{a.e.}\),且 \(\exists g\in \mathcal{L}^1\) 使得 \(|f_n|\leq g,\text{a.e.}\),则 \(f\in \mathcal{L}^1, \int f = \lim_{n\rightarrow \infty} \int f_n\)

Proof:不妨设 \(f,f_n: X\rightarrow \mathbb{R}\),则 \(g+f_n\geq 0, \text{a.e.};\quad g-f_n\geq 0, \text{a.e.}\)。根据 Fatou 引理,

\[\int (g+f) \leq \underline{\lim}\limits_{n\rightarrow \infty}\int(g+f_n), \quad \int (g-f) \leq \underline{\lim}\limits_{n\rightarrow \infty}\int(g-f_n). \]

因此

\[\overline{\lim}\limits_{n\rightarrow \infty}\int f_n \leq \int f\leq \underline{\lim}\limits_{n\rightarrow \infty}\int f_n. \]

所以 \(\int f = \lim_{n\rightarrow \infty}\int f_n\)

Theorem 2.53\(\{f_j\}\in \mathcal{L}^1\)\(\sum \int |f_i| < \infty\),则 \(\sum f_i\) 几乎处处收敛于某个 \(f\in \mathcal{L}^1\)\(\int f = \sum \int f_i\)

Proof:\(g = \sum |f_i|\),则由单调收敛定理,有

\[\int g = \sum\int |f_i| < \infty. \]

所以 \(g\in \mathcal{L}^1\),因此 \(g\) 几乎处处有限。

所以 \(\sum f_j(x)\) 几乎处处收敛于 \(f(x)\)

因为 \(\forall n, |\sum_{j=1}^n f_j| \leq g\),所以由控制收敛定理有 \(\int f = \sum_{j=1}^\infty \int f_j < \infty\)

Theorem 2.54(1)若 \(f\in \mathcal{L}^1(\mu)\),且 \(\forall \epsilon>0\),存在简单函数 \(\phi\in \mathcal{L}^1(\mu)\) 使得 \(\int |f-\phi| < \epsilon\)

(2)若 \(\mu\)\(\mathbb{R}\) 上的 Lebesgue-Stieltjes 测度,\(\phi\) 中的 \(E_j\) 可取为有限个开区间之并。

(3)存在连续且有紧支集的函数 \(g: \mathbb{R\rightarrow R}\) 使得 \(\int |f-g| < \epsilon\)

Proof:(1)存在 \(\{\phi_n\}\) 使得 \(0\leq |\phi_1|\leq \dots\leq |\phi_n|\leq |f|\)\(\phi_n\rightarrow f\)

因为 \(|\phi_n - f|\leq |\phi_n| + |f|\leq 2|f|\),所以由控制收敛定理得

\[\lim_{n\rightarrow \infty}\int|\phi_n-f| = \int\lim_{n\rightarrow\infty} |\phi_n-f| = 0. \]

(2)设 \(\phi = \sum a_j\chi_{E_j}, a_j\neq 0\)\(\{E_j\}\) 两两无交,则 \(\mu(E_j) = \frac 1{|a_j|}\int_{E_j}|\phi|\leq \frac{\int |f|}{|a_j|} < \infty\)

\(\mu\)\(\mathbb{R}\) 上的 Lebesgue-Stieltjes 测度,则可取有限个开区间之并 \(A_j\) 使得 \(\mu(E_j\triangle A_j) < \frac{2^{-j}\epsilon}{|a_j|}\)

\(\phi := \sum a_j\chi_{E_j}\),则 \(\int |\chi_{E_j} - \chi_{A_j}| = \mu(E_j\triangle A_j) < \frac{2^{-j}\epsilon}{|a_j|}\)

(3)若 \(A_j = \cup_k I_j^k\),由(2)得 \(I_j^k\) 是有限个开区间。\(\chi_{I_j^k}\) 可以被连续函数逼近。

Theorem 2.55\(f: X\times [a,b]\rightarrow \mathbb{C}\)\(f(\cdot,t): X\rightarrow \mathbb{C}\) 对任意 \(t\in [a,b]\) 可积,令 \(F(t) = \int_X f(x,t)d\mu(x)\),则

(1)设 \(\exists g\in \mathcal{L}^1(\mu)\) 使得 \(|f(x,t)|\leq g(x), \forall x,t\),若 \(\lim_{t\rightarrow t_0} f(x,t) = f(x,t_0), \forall x\in X\),则 \(\lim_{t\rightarrow t_0} F(t) = F(t_0)\)

(2)设 \(\left(\frac{\partial f}{\partial t}\right)\) 存在,且存在 \(g\in \mathcal{L}^1(\mu)\) 使得 \(\left|\frac{\partial f}{\partial t}(x,t)\right|\leq g(x)\),则 \(F\) 可微且 \(F'(t) = \int\frac{\partial f}{\partial t}(x,t)d\mu(x)\)

Proof:(1)令 \(\{t_n\}\subset [a,b]\backslash\{t_0\},t_n\rightarrow t_0\),设 \(f_n(x) = f(x,t_n)\)

因为 \(|f_n|\leq g, \forall n\),所以由控制收敛定理有

\[\int_X f(x,t_0) = \int_X \lim_{n\rightarrow \infty}f_n = \lim_{n\rightarrow \infty}\int_X f_n = \lim_{n\rightarrow \infty}F(t_n). \]

(2)设

\[\frac{\partial f}{\partial t}(x,t_0)= \lim_{n\rightarrow \infty}\frac{f(x,t_n) - f(x,t_0)}{t_n-t_0} := \lim_{n\rightarrow \infty}h_n(x). \]

由单调收敛定理,

\[|h_n(x)|\leq \sup_{t\in [a,b]}\left|\frac{\partial f}{\partial t}(x,t)\right|\leq g(x). \]

由控制收敛定理,

\[F'(t_0) = \lim_{n\rightarrow \infty}\frac{F(t_n)-F(t_0)}{t_n-t_0} = \lim_{n\rightarrow \infty}\int h_n(x)d\mu(x) = \int\lim_{n\rightarrow \infty}h_n(x)d\mu(x) = \int\frac{\partial f}{\partial t}(x,t)d\mu(x) \]

Theorem 2.56(Riemann 可积和 Lebesgue 可积的关系)

\(f: [a,b]\rightarrow \mathbb{R}\) 可测,则

(1)若 \(f\) Riemann 可积,则 \(f\in \mathcal{L}^1([a,b])\),且 \(\int_a^b fdx = \int_{[a,b]} fdm\)

(2)若 \(f\) Riemann 可积,则 \(m(\{x:f在x处不连续\})=0\)

Remark 2.57

  • 为什么要使用 Lebesgue 积分?
    • 极限顺序可交换
    • 函数类更大
    • 有完备的函数空间(例如 \(L^p\)
  • Lebesgue 积分一定更优吗?
    • 不一定,某些经典的 Riemann 积分,如 \(\int_0^{+\infty}\frac{\sin x}{x}dx\),从 Riemann 积分角度研究更好。

Definition 2.58(Gamma 函数)\(z\in \mathbb{C}\)\(\text{Re}(z)>0\),定义 \(f_z: (0,+\infty)\rightarrow \mathbb{C}\)\(f_z(t) = t^{z-1}e^{-t}\),则因为 \(t^{z-1} = e^{(z-1)\log t}\),所以有 \(|f_z(t)|\leq t^{\text{Re}z-1}\)\(|f_z(t)|\leq C_ze^{-\frac t2}\)

定义 \(\Gamma(z) := \int_0^\infty t^{z-1}e^{-t}dt = \int_0^\infty f_z(t)dt\),则由控制收敛定理知 \(\Gamma(z)\) 是良定义的。

Proposation 2.59 \(\Gamma(z+1) = z\Gamma(z)\)。由此 \(\Gamma\) 函数的定义域可延拓到 \(\mathbb{C}\backslash (\mathbb{Z}^-\cup \{0\})\)

Proof:

\[\int_\epsilon^N t^ze^{-t}dt = -t^ze^{-t}\bigg|_\epsilon^N + z\int_\epsilon^Nt^{z-1}e^{-t}dt \rightarrow z\int_0^\infty e^{-t}t^{z-1}dt = z\Gamma(z), \quad \epsilon\rightarrow 0^+,N\rightarrow \infty. \]

2.4 四种收敛模式

Definition 2.60(积分收敛)\(\{f_n\}\)\(f\)\(\mathcal{L}^1\) 可积函数,且 \(\lim_{n\rightarrow \infty}\int |f_n-f| = 0\),则称 \(\{f_n\}\) \(L^1\) 收敛于 \(f\),记作 \(f_n\stackrel{L^1}\rightarrow f\)

Definition 2.61(依测度收敛)\(\{f_n\}\)\(f\) 是可测函数,且

\[\forall \epsilon>0,\lim_{n\rightarrow \infty}\mu(x:\{|f_n(x)-f(x)|>\epsilon\})=0, \]

则称 \(\{f_n\}\) 依测度收敛于 \(f\),记作 \(f_n\stackrel{\mu}\rightarrow f\)

Theorem 2.62\(f_n\stackrel{L^1}\to f\),则 \(f_n\stackrel{\mu}\to f\)

Proof:对任意 \(\epsilon>0\),由积分收敛可知

\[\epsilon^{-1}\int|f_n-f|\geq \epsilon^{-1}\int_{|f_n-f|\geq \epsilon}|f_n-f|\geq \mu(\{|f-f_n|\geq \epsilon\})\rightarrow 0. \]

所以 \(f_n\stackrel{\mu}\to f\)

Definition 2.63\(\{f_n\}\) 是测度 Cauchy 列如果

\[\forall \epsilon>0, \mu(\{x:|f_n(x) - f_m(x)|>\epsilon\})\stackrel{n,m\rightarrow \infty}\longrightarrow 0. \]

Remark 2.64 我们目前已经介绍了四种收敛模式:点态收敛(\(f_n\rightarrow f, \text{a.e.}\));一致收敛(\(f_n\rightrightarrows f\));积分收敛(\(f_n\stackrel{L^1}\rightarrow f\))和依测度收敛(\(f_n\stackrel{\mu}\rightarrow f\))。我们已知

  • 一致收敛 \(\Rightarrow\) 点态收敛,反之不然;
  • 积分收敛 \(\Rightarrow\) 测度收敛,反之不然。

事实上,其他几个都是不成立的。

Example 2.65 我们分别举例说明除了上面两个关系外,四种收敛模式不能互推:

(1)\(f_n(x) = \frac 1n\chi_{[0,n]}\) 一致收敛于 \(f(x) = 0\),但显然不积分收敛于 \(0\)

(2)\(f_n(x) = \chi_{[n,n+1]}\) 点态收敛于 \(f(x) = 0\),但显然不依测度收敛于 \(0\)

(3)\(f_n(x) = n\chi_{[0,\frac 1n]}\) 依测度收敛于 \(0\),但显然不点态收敛于 \(0\)

(4)令 \(g_{j,k} = \chi_{[\frac j{2^k},\frac{j+1}{2^k}]}, f_n := g_{j,k}, n = 2^k+j\),则 \(f_n\) 积分收敛于 \(0\),但显然不点态收敛于 \(0\)

Theorem 2.66\(\{f_n\}\) 是测度 Cauchy 列,则

(1)存在可测函数 \(f\) 使得 \(f_n\stackrel{\mu}\to f\)

(2)存在子列 \(\{f_{n_j}\}\) 使得 \(f_{n_j} \rightarrow f, \text{a.e.}\)

(3)若 \(f_n\stackrel{\mu}\to g\),则 \(g=f,\text{a.e.}\)

Proof:选取 \(g_j = f_{n_j}\) 使得:若 \(E_j := \{x: |g_j - g_{j+1}|\geq 2^{-j}\}\)\(\mu(E_j) < 2^{-j}\)

\(F_k = \cup_{j\geq k} E_j\),若 \(x\not\in F_k\),则

\[\forall i\geq j\geq k, |g_j-g_i|\leq \sum_{l=j}^{i-1}|g_{l+1}-g_l|\leq \sum_{l=j}^{i-1} 2^{-l} \leq 2^{-j+1}. \]

因此 \(\forall x\in F_k^c\)\(\{g_j(x)\}\) 是 Cauchy 列。

\(F := \limsup_j E_j = \cap_{k\geq 1}F_k\),则 \(\mu(F) = 0\)

定义

\[f(x) = \begin{cases} \lim_j g_j(x), & x\not\in F,\\ 0, & x\in F, \end{cases} \]

\(g_j\rightarrow f, \text{a.e.}\)。所以

\[\{x: |f_n-f|\geq \epsilon\}\subset \{x: |f_n-g_j|\geq \frac\epsilon 2\}\cup\{x: |g_j-f|\geq \frac\epsilon 2\}. \]

所以 \(\mu(\{x: |f_n-f|\geq \epsilon\})\rightarrow 0\)

假设 \(f_n\stackrel{\mu}\to g\),则

\[\{x:|f-g|\geq \epsilon\}\subset \{x:|f-f_n|\geq \frac\epsilon 2\}\cup\{x:|g-f_n|\geq \frac\epsilon 2\} \]

由测度收敛可知 \(\mu(\{x: |f-g|\geq \epsilon\}) = 0\)。所以 \(f=g,\text{a.e.}\)

Corollary 2.67\(f_n\stackrel{L^1}\to f\),则 \(f_n\stackrel{\mu}\to f\),则存在子列 \(\{f_{n_j}\}\) 点态收敛于 \(f\)

Theorem 2.68(Egoroff 定理)\(\mu(X) < \infty\)\(f_n: X\rightarrow \mathbb{C}\) 可测,\(f_n\rightarrow f,\text{a.e.}\),则

\[\forall \epsilon>0, \exists E\subset X,\mu(E)<\epsilon\rightarrow f_n\rightrightarrows f \text{ on }E^c. \]

Proof:不妨设 \(f_n\rightarrow f\)(否则可去掉一个零测集)。

定义 \(E_n(k) = \cup_{m=n}^\infty\{x:|f_m(x)-f(x)|\geq \frac 1k\}\),则对任意固定的 \(k\)\(E_n(k)\) 关于 \(n\) 单调减,且 \(\cap_{n=1}^\infty E_n(k) = \emptyset\)。因此 \(\mu(E_n(k))\rightarrow 0, n\rightarrow \infty\)。所以

\[\forall \epsilon>0, k\in \mathbb{N}, \exists n_k,\text{s.t.}\mu(E_{n_k}(k)) < 2^{-k}\epsilon. \]

\(E = \cup_{k=1}^\infty E_{n_k}(k)\),则 \(\mu(E) < \epsilon\)

\(x\in E^c = \cup_{k=1}^\infty E_{n_k}^c(k)\),则 \(|f_n(x) - f(x)| < \frac 1k, n>n_k \Rightarrow f_n\rightrightarrows f \text{ on }E^c\)

2.5 乘积测度

Definition 2.69(矩形)给定测度空间 \((X,\mathcal{M},\mu)\)\((Y,\mathcal{N},\nu)\) 和乘积空间 \((X\times Y,\mathcal{M\otimes N})\),称 \(X\times Y\) 中的集合是矩形如果它形如 \(A\times B\),其中 \(A\in \mathcal{M}, B\in \mathcal{N}\)

Proposation 2.70 全体矩形构成了一个基本族,因此 \(\mathcal{A} := \{有限个矩形的无交并\}\) 是一个代数,且 \(\mathcal{M(A)} = \mathcal{M\otimes N}\)

Proof:\(A,E\in \mathcal{M}, B,F\in \mathcal{N}\),则 \((A\times B)\cap (E\times F) = (A\cup E) \times (B\cap F) \in \mathcal{M\otimes N}\)\((A\times B)^c = (X\times B^c)\cup (A^c\times B)\)

Definition 2.71(乘积预测度)\(A\in \mathcal{M}, B\in \mathcal{N}\),则定义 \(\pi(A\times B) := \mu(A)\nu(B)\)

Proposation 2.72 \(\pi\)\(\mathcal{A}\) 上的预测度。

Proof:\(A\times B = \cup_j A_j\times B_j\) 是至多可数个矩形的无交并,则

\[\chi_A(x)\chi_B(y) = \chi_{A\times B}(x,y) = \sum_j\chi_{A_j\times B_j}(x,y) = \sum_j\chi_{A_j}(x)\chi_{B_j}(y). \]

将上述特征函数在 \(X\) 上积分得

\[\begin{aligned} &\mu(A)\chi_B(y)\\ =& \int\chi_A(x)\chi_B(y)d\mu(x)\\ =& \int\sum_j\chi_{A_j\times B_j}(x,y)d\mu(x)\\ =& \sum_j\int\chi_{A_j}(x)\chi_{B_j}(y)d\mu(x)\\ =& \sum_j \mu(A_j)\chi_{B_j}(y). \end{aligned} \]

再在 \(Y\) 上积分得

\[\begin{aligned} & \pi(A\times B)\\ =& \mu(A)\nu(B) \\ =& \sum_j\mu(A_j)\nu(B_j) \\ =& \sum_j\pi(A_j\times B_j). \end{aligned} \]

所以 \(\pi\)\(\mathcal{A}\) 上的预测度。

Definition 2.73(乘积测度)\(\pi\) 诱导了 \(X\times Y\) 上对应代数 \(\mathcal{M}\otimes \mathcal{N}\) 的外测度。记作 \(\mu\times \nu\)

Remark 2.74

  • \(\mu,\nu\)\(\sigma-\)有限测度,则 \(\mu\times v\) 也是。
  • 在(1)的条件下,\(\mu\times \nu\) 是唯一的。
  • 同理可定义 \(\mu_1\times \mu_2\times\dots\times \mu_n\)

Definition 2.75(分量)给定测度空间 \((X,\mathcal{M},\mu)\)\((Y,\mathcal{N},\nu)\)\(E\subset X\times Y\),定义 \(E_x := \{y\in Y,(x,y)\in E\}\)\(E^y := \{x\in X, (x,y)\in E\}\) 分别为 \(E\)\(x\) 方向分量和 \(y\) 方向分量。对 \(X\times Y\) 上的函数 \(f\),我们称 \(f_x(y) = f^y(x) = f(x,y)\)

Example 2.76

\[(\chi_E)_x(y) = \begin{cases} 1, & (x,y)\in E, \\ 0, & \text{otherwise} \end{cases} = \chi_{E_x}(y). \]

Proposation 2.77

(1)若 \(E\in \mathcal{M\times N}\),则 \(\forall x\in X, E_x\in \mathcal{N}\)\(\forall y\in Y, E^y\in \mathcal{M}\)

(2)若 \(f\)\(\mathcal{M\otimes N}\) 可测函数,则 \(f_x, f^y\) 分别是 \(\mathcal{N},\mathcal{M}\) 可测函数。

Proof:\(\mathcal{M\otimes N}\) 是最小的包含所有矩形的 \(\sigma-\)代数。

考虑 \(\mathcal{R} := \{E\subset X\times Y: E_x\in \mathcal{N}, E^y\in \mathcal{M}, \forall (x,y)\in X\times Y\}\),则只需证明 \(\mathcal{R}\)\(\sigma-\) 代数。

\(\{E_j\}\subset \mathcal{R}, E\in\mathcal{R},\forall x\in X,(\cup_{i=1}^\infty E_i)_x = \cup_{i=1}^\infty(E_i)_x\),则 \(\cup_i E_i\in \mathcal{R}\)

又因为 \((E^c)_x = (E_x)^c\),所以 \(E^c\in \mathcal{R}\)

所以 \(\mathcal{R}\)\(\sigma-\)代数。

\(f: X\times Y\rightarrow \mathbb{C}\),则 \(\forall B\subset \mathbb{C}\)\((f_x)^{-1}(B) = (f^{-1}(B))_x\)。所以 \(f\)\(\mathcal{M\otimes N}\) 可测的可推出 \(f_x\)\(\mathcal{N}\) 可测的。

Definition 2.78(单调类)\(\mathcal{C}\subset 2^X\) 是单调类如果

  • \(\{E_j\}\subset \mathcal{C}\)\(E_1\subset E_2\subset\dots\),则 \(\cup_j E_j\in \mathcal{C}\)
  • \(\{E_j\}\subset \mathcal{C}\)\(E_1\supset E_2\supset\dots\),则 \(\cap_j E_j\in \mathcal{C}\)

Remark 2.79

  • \(\sigma-\) 代数都是单调类;
  • 单调类的交集仍为单调类。

Lemma 2.80\(\mathcal{A}\) 是代数,则由 \(\mathcal{A}\) 生成的单调类是 \(\mathcal{M(A)}\)

Proof:由定义,\(\mathcal{C\subset M(A)}\)。因此只需证明 \(\mathcal{C}\)\(\sigma-\)代数。

给定 \(E\in \mathcal{C}\),定义 \(\mathcal{C}(E) := \{F\subset \mathcal{C}: E\backslash F,F\backslash E,E\cap F\in \mathcal{C}\}\)

\(\emptyset, E\in \mathcal{C}(E)\),且 \(E\in \mathcal{C}(F)\Leftrightarrow F\in \mathcal{C}(E)\)。事实上,\(\mathcal{C}(E)\) 是一个单调类。

\(E\in \mathcal{A}\),则 \(\forall F\in \mathcal{A}, F\in \mathcal{C}(E)\)。所以 \(\mathcal{A\subset C}(E)\),所以 \(\mathcal{C}\subset \mathcal{C}(E)\)

\(F\in \mathcal{C}\),则 \(F\in \mathcal{C}(E),\forall E\in \mathcal{A}\Leftrightarrow E\in \mathcal{C}(F),\forall E\in \mathcal{A}\Rightarrow \mathcal{A}\in \mathcal{C}(F)\Rightarrow \mathcal{C}\in \mathcal{C}(F)\)

所以若 \(E,F\in \mathcal{C}, F\in \mathcal{C}(E)\),则 \(E\backslash F, E\cap F\in \mathcal{C}\),且 \(X\in \mathcal{A}\subset \mathcal{C}\)。所以 \(\mathcal{C}\) 是代数。

现如果 \(\{E_j\}\subset \mathcal{C},\cup_{j=1}^n E_j\in \mathcal{C},\forall n\),则 \(\cup_{j=1}^\infty E_j\in \mathcal{C}\)。所以 \(\mathcal{C}\)\(\sigma-\)代数。

Theorem 2.81\((X,\mathcal{M},\mu)\)\((Y,\mathcal{N},\nu)\)\(\sigma-\)有限的,\(E\in \mathcal{M\otimes N}\),则 \(x\mapsto \nu(E_x)\)\(y\mapsto \mu(E_y)\) 可测且 \((\mu\times \nu)(E) = \int \nu(E_x)d\mu(x) = \int\mu(E^y)d\nu(y)\)

Proof:(1)先假设 \(\mu(X), \nu(Y) < \infty\)。设 \(\mathcal{C} = \{E\in \mathcal{M\otimes N}:定理成立\}\)

\(\mathcal{C}\) 包含全体矩形及其有限无交并。故只需证明 \(\mathcal{C}\) 是单调类。

i) 设 \(E = \cup_n E_n, \{E_n\}\subset \mathcal{C}\)\(E_n\) 单增。令 \(f_n(y) = \mu((E_n)^y)\),则 \(f_n(y)\) 单调递增趋向于 \(f(y) = \mu(E^y)\)。因此

\[\int\mu(E^y)d\nu(y) = \lim_{n\rightarrow\infty}\int\mu((E_n)^y)d\nu(y) = \lim_{n\rightarrow \infty}(\mu\times \nu)(E_n) = (\mu\times \nu)(E). \]

ii) 设 \(\{E_n\}\supset \mathcal{C}\)\(E_n\) 单减。令 \(f(y) = \mu((E_1)^y)\),则 \(f\in \mathcal{L}^1(\nu)\)

由控制收敛定理得 \(\int \mu(E^y)d\nu(y) = (\mu\times \nu)(E)\)

(2)若 \(\mu,\nu\)\(\sigma-\)有限的,\(X\times Y = \cup_{i=1}^\infty X_i\times Y_i\)\(X_i,Y_i\) 单调增且 \(\mu(X_i) < \infty, \nu(Y_i) < \infty\)

因为 \(E\in \mathcal{M\otimes N}\),所以将(1)应用于 \(E\cap (X_j\times Y_j)\)

\[(\mu\times \nu)(E\cap (X_j\times Y_j)) = \int_{\chi_{X_j}}\cup_j(E_x\times Y_j)d\mu(x). \]

由单调收敛定理,\((\mu\times \nu)(E) = \int \nu(E_x)d\mu(x)\)

Theorem 2.82(Fubini-Tonelli)\((X,\mathcal{M},\mu)\)\((Y,\mathcal{N},\nu)\)\(\sigma-\)有限测度空间,则

(1)(Tonelli)若 \(f\in \mathcal{L}^1(X\times Y)\)\(g(x) = \int f_x d\nu, h(y) = \int f^y d\mu\),则 \(g\in \mathcal{L}^+(X), h\in \mathcal{L}^+(Y)\),且

\[\int f d(\mu\times \nu) = \int(\int f(x,y)d\nu)d\mu = \int (\int f(x,y)d\mu)d\nu. \]

(2)(Fubini)若 \(f\in \mathcal{L}^1(X\times Y)\)\(f_x, f^y\in \mathcal{L}^1, \text{a.e.}\),则 Tonelli 的结论成立。

Proof:(1)由 Theorem 2.81,结论对集合的特征函数成立,进而对简单函数成立,进而由单调收敛定理对一般可测函数成立。

(2)由(1),对 \(f\in \mathcal{L}^+(X\times Y)\),若 \(\int fd(\mu\times \nu) < \infty\),则 \(g,h\in \infty, \text{a.e.}, f_x,f^y\in \mathcal{L}^1, \text{a.e.}\)

\(f\) 表示为 \(f = f^+ - f^-\),由 Tonelli,结论成立。

Definition 2.83\(\mathbb{R}^n\) 上的测度 \(m := m^n\)\(\mathbb{R}\) 上的 \(n\) 重乘积的完备化。

Remark 2.84(1)

\[\begin{aligned} E\in \mathcal{L}^n&\Leftrightarrow m(E) = \inf\{m(U): U\supset E为开集\} = \sup\{m(K): K\subset E为闭集\}\\ &\Leftrightarrow E = G\backslash N,G\in \mathcal{G}_\delta,m(N)=0\\ &\Leftrightarrow E = F\cup N,F\in \mathcal{F}_\sigma,m(N)=0. \end{aligned} \]

(2)Lebesgue 测度在平移或旋转变换下不变。

posted @ 2025-03-16 12:36  EssnSlaryt  阅读(200)  评论(0)    收藏  举报