组合数学学习笔记
组合数1
-
给定 n 组询问,每组询问给定两个整数 a,b,请你输出 \(C_a^{b}\bmod(10^9+7)\) 的值
-
数据范围
\[1≤n≤10000
\]
\[1≤b≤a≤2000
\]
上过小学的应该都知道
\[C_a^{b} = \frac{a\times (a - 1) \dots (a -b +1)}{1 \times 2 \times 3 \dots b}
\]
\[C_a^{b} = \frac{!a}{!b \times !(a-b)}
\]
有递推式
\[\color{Red}C_a^{b} = C_a^{b-1} + C_{a -1}^{b -1}
\]
\[n^2
\]
#include <iostream>
#include <algorithm>
using namespace std;
const int N =2015,MOD = 1e9 + 7;
int c[N][N];
void indck()
{
for(int i = 0 ; i < N ; i ++)
for(int j = 0 ; j <= i ; j ++ )
if(!j)c[i][j] = 1;
else c[i][j] = (c[i - 1][j - 1] + c[i - 1][j]) % MOD;
}
int n;
int main()
{
indck();
cin >> n ;//scanf("%d",);
while(n -- )
{
int a,b;
scanf("%d%d", &a, &b);
printf("%d\n",c[a][b]);
}
return 0;
}
组合数2
给定 n 组询问,每组询问给定两个整数 a,b,请你输出 \(C_a^{b}\bmod(10^9+7)\)
\[1≤n≤10000
\]
\[1≤b≤a≤105
\]
- 因为
\[C_a^{b} = \frac{!a}{!b \times !(a-b)}
\]
我们可以预处理阶乘\(fact_i\),逆元\(infact_i\)
\[\color{Red}C_a^{b} = faet_a \times infact_{b - a} \times infact_{b}
\]
#include <iostream>
#include <cstdio>
using namespace std;
typedef long long LL;
const int N = 100010,mod = 1e9 + 7;
int fact[N],infact[N];
int qmi(int a,int k,int p)
{
int res = 1;
while(k)
{
if(k&1)res = (LL)res * a % p;
a = (LL)a * a % p;
k >>= 1;
}
return res;
}
int main()
{
fact[0] = infact[0] = 1;
for(int i = 1 ; i < N ; i++ )
{
fact[i] =(LL)fact[i - 1] * i % mod;
infact[i] = (LL)infact[i - 1] * qmi(i,mod - 2,mod) % mod;
}
int n;
scanf("%d",&n);
while(n--)
{
int a,b;
scanf("%d%d",&a,&b);
printf("%d\n",(LL)fact[a] * infact[a - b] % mod * infact[b] % mod);
}
return 0;
}
\[nlog(n)
\]
求组合数3
给定 n 组询问,每组询问给定三个整数 a,b,p,其中 p 是质数,请你输出 \(C^b_{a} \bmod p\) 的值。
\[1≤n≤20,
1≤b≤a≤1018,
1≤p≤105,
\]
卢卡斯定理
\[\huge \color {Orange}Lucas
\]
有结论
\[C_b^a \equiv C_{b \bmod p}^{a \bmod p} \times C_{b/p}^{a/p}
\]
\[p\cdot \log{n}\log{p}
\]
设
\[a = a_k \times p^0 + a_{k-1} \cdots \times p^0
\]
\[b = b_k \times p^0 + b_{k-1} \cdots \times p^0 \cdots
\]
\[(1 + x)^{p} = 1 + C_p^1 \times + C_p^2 + \cdots C_p^b
\]
$\because p $是质数,p中不包含任意小于p的质因子
\(\therefore\)
\[(1 + x)^{p} = 1 + C_p^1 \times x+ C_p^2 \times x^2+ \cdots C_p^b \times x^{k - 1}
\]
\[\because C_{p_k}^{1} \sim C_k^{p_k} (\bmod p) = 0
\]
\[\begin{array}{l}
(1 + x)^a = (1 + x)^{a_0} \times ((1 + x)^{p_1})^{a_1} \times ((1 + x)^{p_2})^{a_2} \cdots ((1 + x)^{p_b})^{a_k}\\
(1 + x)^a = (1 + x)^{a_0} \times (1 + x^{p_1})^{a_1} \times (1 + x^{p2})^{a_2} \cdots ( 1 + x^b)^{a_k}
\end{array}
\]
\[C_a^b \equiv C_{a_k}^{b_k} \times C_{a_{k - 1} }^{b_{k - 1}} \cdots C_{a_{0}}^{b_{0}}
\]
若
\[\begin{array}{l}
b_i > a_i\\
C_a^b = 0\\
\end{array}
\]
#include <iostream>
#include <algorithm>
#include <cstdio>
using namespace std;
typedef long long LL;
int p;
int qmi(int a,int k)
{
int res = 1;
while(k)
{
if(k&1)res = (LL)res * a % p;
a = (LL) a * a %p;
k >>= 1;
}
return res;
}
int C(LL a,LL b)
{
int res = 1;
for(int i = 1 , j = a ; i <= b;i ++ , j --)
{
res = (LL)res * j % p;
res = (LL)res *qmi(i,p - 2) % p;//除i = 乘i的逆元
}
return res;
}
int lucas(LL a, LL b)
{
if(a < p && b < p )return C(a,b);
return (LL)C(a%p,b%p) * lucas(a/p,b/p) % p;
}
int main()
{
int n;
scanf("%d", &n);
while(n--)
{
LL a,b;
scanf("%lld%lld%d",&a,&b,&p);
cout << lucas(a,b) << endl;
}
return 0;
}
组合数4
输入 a,b,求 \(C_a^b\)的值。
注意结果可能很大,需要使用高精度计算。
- 分解质因数
- 求每个质数的次数
$ p_1^{k_1} \times p_2^{k_2}\cdots \times p_k^{k_k}$ - 用高精度乘法每个质因子
\[C_a^{b} = \frac{a\times (a - 1) \dots (a -b +1)}{1 \times 2 \times 3 \dots b}
\]
\[C_a^{b} = \frac{!a}{!b \times !(a-b)}
\]
\[\begin{array}{l}
!a = \left \lfloor \frac{a}{p} \right \rfloor + \left \lfloor \frac{a}{p^2} \right \rfloor + \left \lfloor \frac{a}{p^3}\right \rfloor \cdots(p^x > a)\\
\end{array}
\]
\(
\left \lfloor \frac{a}{p} \right \rfloor
\)为p的倍数
\(
\left \lfloor \frac{a}{p^2} \right \rfloor
\)为\(p^2\)的倍数
\(\left \lfloor \frac{a}{p^3} \right \rfloor
\)为\(p^3\)的倍数
#include <iostream>
#include <algorithm>
#include <vector>
using namespace std;
const int N = 50000;
int prime[N],cnt;
int sum[N];
bool st[N];
void get_prime(int n)
{
for(int i = 2 ; i <= n ; i ++)
{
if(!st[i])prime[cnt++] = i;
for(int j = 0 ; prime[j] <= n/i ; j ++)
{
st[prime[j] * i] = true;
if(i % prime[j] == 0)break;
}
}
}
int get(int n,int p)
{
int res = 0;
while(n)
{
res += n / p;
n /= p;
}
return res;
}
vector<int> mul(vector<int>a,int b)
{
vector<int> c;
int t = 0;
for(int i = 0 ; i < a.size() ; i ++ )
{
t += a[i] * b;
c.push_back(t%10);
t /= 10;
}
while(t)
{
c.push_back(t % 10);
t /= 10;
}
// while(C.size()>1 && C.back()==0) C.pop_back();
//考虑b==0时才有pop多余的0
return c;
}
int main()
{
int a,b;
cin >> a >> b;
get_prime(a);
for(int i = 0 ; i < cnt ; i ++ )
{
int p = prime[i];
sum[i]= get(a,p) - get(b,p) - get(a - b,p);
}
vector<int>res;
res.push_back(1);
for(int i = 0 ; i < cnt ; i ++ )
for(int j = 0 ; j < sum[i] ; j ++ )
res = mul(res,prime[i]);
for(int i = res.size() - 1 ; i >= 0 ; i --) printf("%d",res[i]);
puts("");
return 0;
}
“风雪越是呼啸,雪莲越是绽放”

浙公网安备 33010602011771号