• 博客园logo
  • 会员
  • 众包
  • 新闻
  • 博问
  • 闪存
  • 赞助商
  • HarmonyOS
  • Chat2DB
    • 搜索
      所有博客
    • 搜索
      当前博客
  • 写随笔 我的博客 短消息 简洁模式
    用户头像
    我的博客 我的园子 账号设置 会员中心 简洁模式 ... 退出登录
    注册 登录
neverlandly
博客园    首页    新随笔    联系   管理    订阅  订阅

Leetcode: Best Time to Buy and Sell Stock with Cooldown

Say you have an array for which the ith element is the price of a given stock on day i.

Design an algorithm to find the maximum profit. You may complete as many transactions as you like (ie, buy one and sell one share of the stock multiple times) with the following restrictions:

You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).
After you sell your stock, you cannot buy stock on next day. (ie, cooldown 1 day)
Example:

prices = [1, 2, 3, 0, 2]
maxProfit = 3
transactions = [buy, sell, cooldown, buy, sell]

参考了:https://leetcode.com/discuss/71391/easiest-java-solution-with-explanations

1. Define States

To represent the decision at index i:

  • buy[i]: Max profit till index i. The series of transaction is ending with a buy.
  • sell[i]: Max profit till index i. The series of transaction is ending with a sell.

To clarify:

  • Till index i, the buy / sell action must happen and must be the last action. It may not happen at index i. It may happen at i - 1, i - 2, ... 0.
  • In the end n - 1, return sell[n - 1]. Apparently we cannot finally end up with a buy. In that case, we would rather take a rest at n - 1.
  • For special case no transaction at all, classify it as sell[i], so that in the end, we can still return sell[n - 1]. Thanks @alex153 @kennethliaoke @anshu2.

2. Define Recursion

  • buy[i]: To make a decision whether to buy at i, we either take a rest, by just using the old decision at i - 1, or sell at/before i - 2, then buy at i, We cannot sell at i - 1, then buy at i, because of cooldown.
  • sell[i]: To make a decision whether to sell at i, we either take a rest, by just using the old decision at i - 1, or buy at/before i - 1, then sell at i.

So we get the following formula:

buy[i] = Math.max(buy[i - 1], sell[i - 2] - prices[i]);   
sell[i] = Math.max(sell[i - 1], buy[i - 1] + prices[i]);

3. Optimize to O(1) Space

DP solution only depending on i - 1 and i - 2 can be optimized using O(1) space.

  • Let b2, b1, b0 represent buy[i - 2], buy[i - 1], buy[i]
  • Let s2, s1, s0 represent sell[i - 2], sell[i - 1], sell[i]

Then arrays turn into Fibonacci like recursion:

b0 = Math.max(b1, s2 - prices[i]);
s0 = Math.max(s1, b1 + prices[i]);

4. Write Code in 5 Minutes

First we define the initial states at i = 0:

  • We can buy. The max profit at i = 0 ending with a buy is -prices[0].
  • We cannot sell. The max profit at i = 0 ending with a sell is 0.

1D Array: better to understand:

 1 public class Solution {
 2     public int maxProfit(int[] prices) {
 3         if (prices==null || prices.length<=1) return 0;
 4         int[] buy = new int[prices.length];
 5         int[] sell = new int[prices.length];
 6         buy[0] = -prices[0];
 7         sell[0] = 0;
 8         for (int i=1; i<prices.length; i++) {
 9             buy[i] = Math.max(buy[i-1], -prices[i] + ((i>=2)? sell[i-2] : 0));
10             sell[i] = Math.max(sell[i-1], buy[i-1] + prices[i]);
11         }
12         return sell[prices.length-1];
13     }
14 }

Just few variables:(better)

 1 public class Solution {
 2     public int maxProfit(int[] prices) {
 3         if (prices==null || prices.length<=1) return 0;
 4         int b0 = -prices[0];
 5         int s0 = 0;
 6         int b1 = b0;
 7         int s1 = s0;
 8         int s2 = 0;
 9         for (int i=1; i<prices.length; i++) {
10             b0 = Math.max(b1, s2-prices[i]);
11             s0 = Math.max(s1, b1+prices[i]);
12             s2 = s1;
13             s1 = s0;
14             b1 = b0;
15         }
16         return s0;
17     }
18 }

 

posted @ 2015-12-31 13:15  neverlandly  阅读(870)  评论(0)    收藏  举报
刷新页面返回顶部
博客园  ©  2004-2025
浙公网安备 33010602011771号 浙ICP备2021040463号-3