实验6:开源控制器实践——RYU

实验6:开源控制器实践——RYU

一、实验目的

  1. 能够独立部署RYU控制器;
  2. 能够理解RYU控制器实现软件定义的集线器原理;
  3. 能够理解RYU控制器实现软件定义的交换机原理。

二、实验环境

Ubuntu 20.04 Desktop amd64

三、实验要求

(一)基本要求

(1) 搭建下图所示SDN拓扑,协议使用Open Flow 1.0,并连接Ryu控制器,通过Ryu的图形界面查看网络拓扑

(2) 阅读Ryu文档的The First Application一节,运行并使用 tcpdump 验证L2Switch

  • 运行L2Switch

  • h1 ping h2

  • h1 ping h3

(3)分析L2Switch和POX的Hub模块有何不同

RYU的L2Switch模块和POX的Hub模块都是洪泛转发,但是ryu的L2Switch模块运行时不可查看流表,而pox的Hub模块运行时可查看流表

(4)编程修改L2Switch.py,另存为L2032002126.py,使之和POX的Hub模块的变得一致。

  • 运行L2032002126.py

  • 查看流表

  • L2032002519.py代码
from ryu.base import app_manager
from ryu.ofproto import ofproto_v1_3
from ryu.controller import ofp_event
from ryu.controller.handler import MAIN_DISPATCHER, CONFIG_DISPATCHER
from ryu.controller.handler import set_ev_cls
 
 
class hub(app_manager.RyuApp):
    OFP_VERSIONS = [ofproto_v1_3.OFP_VERSION]
 
    def __init__(self, *args, **kwargs):
        super(hub, self).__init__(*args, **kwargs)
 
    @set_ev_cls(ofp_event.EventOFPSwitchFeatures, CONFIG_DISPATCHER)
    def switch_feathers_handler(self, ev):
        datapath = ev.msg.datapath
        ofproto = datapath.ofproto
        ofp_parser = datapath.ofproto_parser
 
        # install flow table-miss flow entry
        match = ofp_parser.OFPMatch()
        actions = [ofp_parser.OFPActionOutput(ofproto.OFPP_CONTROLLER, ofproto.OFPCML_NO_BUFFER)]
        # 1\OUTPUT PORT, 2\BUFF IN SWITCH?
        self.add_flow(datapath, 0, match, actions)
 
    def add_flow(self, datapath, priority, match, actions):
        # 1\ datapath for the switch, 2\priority for flow entry, 3\match field, 4\action for packet
        ofproto = datapath.ofproto
        ofp_parser = datapath.ofproto_parser
        # install flow
        inst = [ofp_parser.OFPInstructionActions(ofproto.OFPIT_APPLY_ACTIONS, actions)]
        mod = ofp_parser.OFPFlowMod(datapath=datapath, priority=priority, match=match, instructions=inst)
        datapath.send_msg(mod)
 
    @set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER)
    def packet_in_handler(self, ev):
        msg = ev.msg
        datapath = msg.datapath
        ofproto = datapath.ofproto
        ofp_parser = datapath.ofproto_parser
        in_port = msg.match['in_port']  # get in port of the packet
 
        # add a flow entry for the packet
        match = ofp_parser.OFPMatch()
        actions = [ofp_parser.OFPActionOutput(ofproto.OFPP_FLOOD)]
        self.add_flow(datapath, 1, match, actions)
 
        # to output the current packet. for install rules only output later packets
        out = ofp_parser.OFPPacketOut(datapath=datapath, buffer_id=msg.buffer_id, in_port=in_port, actions=actions)
        # buffer id: locate the buffered packet
        datapath.send_msg(out)

(二)进阶要求

(1)阅读Ryu关于simple_switch.py和simple_switch_1x.py的实现,以simple_switch_13.py为例,完成其代码的注释工作

#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from ryu.base import app_manager
from ryu.controller import ofp_event
from ryu.controller.handler import CONFIG_DISPATCHER, MAIN_DISPATCHER
from ryu.controller.handler import set_ev_cls
from ryu.ofproto import ofproto_v1_3
from ryu.lib.packet import packet
from ryu.lib.packet import ethernet
from ryu.lib.packet import ether_types


class SimpleSwitch13(app_manager.RyuApp):
  OFP_VERSIONS = [ofproto_v1_3.OFP_VERSION]   # 定义openflow版本为Openflow1.3

  def __init__(self, *args, **kwargs):
      super(SimpleSwitch13, self).__init__(*args, **kwargs)
      self.mac_to_port = {}  # 定义保存mac地址到端口的一个映射

  # 处理SwitchFeatures事件
  @set_ev_cls(ofp_event.EventOFPSwitchFeatures, CONFIG_DISPATCHER)
  def switch_features_handler(self, ev):
      datapath = ev.msg.datapath      #交换机的相关信息
      ofproto = datapath.ofproto
      parser = datapath.ofproto_parser

      # install table-miss flow entry
      #
      # We specify NO BUFFER to max_len of the output action due to
      # OVS bug. At this moment, if we specify a lesser number, e.g.,
      # 128, OVS will send Packet-In with invalid buffer_id and
      # truncated packet data. In that case, we cannot output packets
      # correctly.  The bug has been fixed in OVS v2.1.0.
      match = parser.OFPMatch()  # match指流表项匹配,OFPMatch()指不匹配任何信息
      actions = [parser.OFPActionOutput(ofproto.OFPP_CONTROLLER,
                                        ofproto.OFPCML_NO_BUFFER)]  # actions:动作
      self.add_flow(datapath, 0, match, actions)  # add_flow()增加流表项

  
  def add_flow(self, datapath, priority, match, actions, buffer_id=None):
      ofproto = datapath.ofproto            # 获取交换机信息
      parser = datapath.ofproto_parser

      inst = [parser.OFPInstructionActions(ofproto.OFPIT_APPLY_ACTIONS,
                                           actions)]
      
      if buffer_id:       # 判断是否存在buffer_id,并生成mod对象
          mod = parser.OFPFlowMod(datapath=datapath, buffer_id=buffer_id,
                                  priority=priority, match=match,
                                  instructions=inst)
      else:
          mod = parser.OFPFlowMod(datapath=datapath, priority=priority,
                                  match=match, instructions=inst)
      
      datapath.send_msg(mod)        # send_msg(mod)即为下发流表

  # 处理PacketIn事件
  @set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER)
  def _packet_in_handler(self, ev):
      # If you hit this you might want to increase
      # the "miss_send_length" of your switch
      if ev.msg.msg_len < ev.msg.total_len:
          self.logger.debug("packet truncated: only %s of %s bytes",
                            ev.msg.msg_len, ev.msg.total_len)
      # 解析数据结构
      msg = ev.msg    # ev.msg 是代表packet_in data structure对象
      datapath = msg.datapath
      # dp. ofproto 和 dp.ofproto_parser 是代表 Ryu 和交换机谈判的 OpenFlow 协议的对象
      # dp.ofproto and dp.ofproto_parser are objects that represent the OpenFlow protocol that Ryu and the switch negotiated
      ofproto = datapath.ofproto
      parser = datapath.ofproto_parser
      in_port = msg.match['in_port']  # 获取源端口

      pkt = packet.Packet(msg.data)
      eth = pkt.get_protocols(ethernet.ethernet)[0]

      if eth.ethertype == ether_types.ETH_TYPE_LLDP:
          # 忽略LLDP类型的数据包
          return
      dst = eth.dst  # 目的端口
      src = eth.src  # 源端口

      dpid = format(datapath.id, "d").zfill(16)
      self.mac_to_port.setdefault(dpid, {})

      self.logger.info("packet in %s %s %s %s", dpid, src, dst, in_port)

      # 学习包的源地址,和交换机上的入端口绑定
      # learn a mac address to avoid FLOOD next time.
      self.mac_to_port[dpid][src] = in_port

      # 查看是否已经学习过该目的mac地址
      if dst in self.mac_to_port[dpid]:  # 如果目的地址存在于mac_to_port中
          out_port = self.mac_to_port[dpid][dst]
      # 否则,洪泛
      else:
          out_port = ofproto.OFPP_FLOOD  # OFPP_FLOOD标志表示应在所有端口发送数据包,即洪泛

      actions = [parser.OFPActionOutput(out_port)]

      # 下发流表避免下次触发 packet in 事件
      # install a flow to avoid packet_in next time
      if out_port != ofproto.OFPP_FLOOD:
          match = parser.OFPMatch(in_port=in_port, eth_dst=dst, eth_src=src)
          # verify if we have a valid buffer_id, if yes avoid to send both
          # flow_mod & packet_out
          if msg.buffer_id != ofproto.OFP_NO_BUFFER:
              self.add_flow(datapath, 1, match, actions, msg.buffer_id)
              return
          else:
              self.add_flow(datapath, 1, match, actions)
      data = None
      if msg.buffer_id == ofproto.OFP_NO_BUFFER:
          data = msg.data

      # 发送Packet_out数据包,带上交换机发来的数据包的信息
      out = parser.OFPPacketOut(datapath=datapath, buffer_id=msg.buffer_id,
                                in_port=in_port, actions=actions, data=data)
      # 发送流表
      datapath.send_msg(out) 

(2)回答下列问题

  • 代码当中的mac_to_port的作用是什么?

保存mac地址到交换机端口的映射

  • simple_switch和simple_switch_13在dpid的输出上有何不同?

在simple_switch_13.py中使用了zfill() 方法返回指定长度为16的字符串,原字符串右对齐,前面填充0;而simple_switch.py直接输出dpid

  • 相比simple_switch,simple_switch_13增加的switch_feature_handler实现了什么功能?

增加了实现交换机以特性应答消息响应特性请求功能

  • simple_switch_13是如何实现流规则下发的?

在触发PacketIn事件后,首先获取协议信息、获取源端口、包学习,交换机信息,以太网信息等。如果以太网类型是LLDP类型的话,则忽略不处理。否则,则获取目的端口和源端口和交换机id的信息,进行交换机自学习:先学习源地址对应的交换机的入端口,再查看是否已经学习目的mac地址,如果没有学习过就洪泛转发。如果学习过,则查看是否有buffer_id,如果有,那么在添加流时加上buffer_id,向交换机发送数据包和流表

  • switch_features_handler和_packet_in_handler两个事件在发送流规则的优先级上有何不同?

switch_features_handler下发流表的优先级比_packet_in_handler的高

(3)硬超时功能

四、个人总结

遇到的问题及解决方法

(1)在运行L2switch.py后却一直ping不通,后经过检查,发现是前一步中ryu没有关闭导致错误,关闭之后,问题解决;(2)在运行L2032002519.py时,出现unsupported version 0x1,运行了几遍之后依然不行,就先去看已经完成的同学是否有同样的问题,后经过查找发现还是有一部分同学出现过同样问题,学习了问题出现的根本原因便进行改正,在将版本设置为“protocols=OpenFlow13后”,问题解决

心得体会

本次实验难度适中,总体来说跟着pdf文档就能较为轻松的完成,但是主要的获取的知识是在实验中的一些结论与靠阅读RYU相关模块的源代码获得的。比如ryu的L2Switch模块与pox的Hub模块的不同在于ryu的L2Switch模块运行时不可查看流表,而pox的Hub模块运行时可查看流表。主要是进阶部分会比较艰难一点,代码比较多而且实现的功能需要认真理解,但是坚持读下来,就会对ryu的控制机制有深入的理解与认识

posted @ 2022-10-19 11:23  Edith12  阅读(29)  评论(0编辑  收藏  举报