LuoguP7337 『MdOI R4』Fun 题解
Content
有 \(n\) 个人去打比赛。给出第 \(i\) 个人的交通方式 \(t_i\) 和颓废值 \(q_i\)(均以 \(0/1\) 表示)。如果 \(t_i=1,q_i=1\) 的人数 \(k\geqslant m\),那么这 \(k\) 个人就只用买 \(m\) 瓶可乐,其余每个人各买一瓶可乐。问需要多少瓶可乐。
数据范围:\(1\leqslant m\leqslant n\leqslant 100,t_i,q_i\in\{0,1\}\)。
Solution
简单地统计一下 \(t_i=1,q_i=1\) 的人数 \(k\) ,然后答案 \(ans=\begin{cases}m+n-k&k\geqslant m\\n&\text{otherwise}\end{cases}\)。
总体来说是一道很小清新的签到题。
Code
int n, m, type, t[107], q[107], k;
int main() {
n = Rint, m = Rint, type = Rint;
F(i, 1, n) t[i] = Rint;
F(i, 1, n) {
q[i] = Rint;
if(t[i] && q[i]) k++;
}
printf("%d", (k >= m) ? (m + n - k) : n);
return 0;
}

浙公网安备 33010602011771号