LeetCode 918. Maximum Sum Circular Subarray
原题链接在这里:https://leetcode.com/problems/maximum-sum-circular-subarray/description/
题目:
Given a circular integer array nums
of length n
, return the maximum possible sum of a non-empty subarray of nums
.
A circular array means the end of the array connects to the beginning of the array. Formally, the next element of nums[i]
is nums[(i + 1) % n]
and the previous element of nums[i]
is nums[(i - 1 + n) % n]
.
A subarray may only include each element of the fixed buffer nums
at most once. Formally, for a subarray nums[i], nums[i + 1], ..., nums[j]
, there does not exist i <= k1
, k2 <= j
with k1 % n == k2 % n
.
Example 1:
Input: nums = [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3.
Example 2:
Input: nums = [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10.
Example 3:
Input: nums = [-3,-2,-3] Output: -2 Explanation: Subarray [-2] has maximum sum -2.
Constraints:
n == nums.length
1 <= n <= 3 * 104
-3 * 104 <= nums[i] <= 3 * 104
题解:
To find the max sum of circular subarray, there are two contitions.
First is max sum occurs in the middle of array.
Second is max sum occurs with tail + head.
For the second part, max(prefix + suffix) = max(sum - middle part) = sum - min(middle part).
Note: when all the nums are negative, sum - min(middle part) = 0, but we can't accept empty subset. Thus when globalMax <= 0, just take the globalMax.
Time Complexity: O(n). n = nums.length.
Space: O(1).
AC Java:
1 class Solution { 2 public int maxSubarraySumCircular(int[] nums) { 3 if(nums == null || nums.length == 0){ 4 return 0; 5 } 6 7 int sum = 0; 8 int n = nums.length; 9 int localMax = 0; 10 int globalMax = nums[0]; 11 int localMin = 0; 12 int globalMin = nums[0]; 13 for(int num : nums){ 14 localMax = Math.max(localMax + num, num); 15 globalMax = Math.max(globalMax, localMax); 16 localMin = Math.min(localMin + num, num); 17 globalMin = Math.min(globalMin, localMin); 18 sum += num; 19 } 20 21 return globalMax > 0 ? Math.max(globalMax, sum - globalMin) : globalMax; 22 } 23 }