随笔分类 - OI / 学习笔记
算法学习笔记
摘要:辛普森积分学习笔记 定积分 定积分的定义 设函数 \(f(x)\) 在区间 \([a,b]\) 上有界,在 \([a,b]\) 中插入若干个分点 \[a=x_0<x_1<x_2<\cdots<x_{n-1}<x_n=b \]把区间 \([a,b]\) 分成 \(n\) 个小区间,各小区间的长度依次为
阅读全文
摘要:《具体数学》阅读笔记 目录《具体数学》阅读笔记1. 常见化简技巧1.1. 基数变换1.2. 待定系数法1.3. 和式和递归式1.3.1. 求和因子1.3.2 扰动法1.3.3 巧用定律与法则 1. 常见化简技巧 1.1. 基数变换 形如 \[\begin{aligned} &f(j)=\alpha_
阅读全文
摘要:整体二分学习笔记 谁说这二分老了,这二分太棒了! 概念 二分适用于答案具有单调性的题目,思路是令 \(\text{Solve}(l,r)\) 表示二分此问题的答案时,已经知道了 \(ans\in[l,r]\)。此时如果有一种手段 \(\text{check(x)}\) 判断 \(ans\ge x\)
阅读全文
摘要:\(\text{2-sat}\) 学习笔记 有这样一类问题,有多个变量 \(a_{1\to n}\),每个变量的取值范围为 \(\{0,1\}\),给出 \(m\) 条限制条件,形如 \((\lor_{i=1}^{k}a_{p_i}=x_i)=\text{true}\) 的形式,需要你求解是否有可行
阅读全文
摘要:凸包学习笔记 内容好多啊。 概念 \(n\) 个点形成的凸包,指的是在坐标系上这 \(n\) 个点构成的包含所有点的,以这 \(n\) 个点中的一些为顶点的极小的凸多边形。而一个凸包又由两部分组成,分为上凸壳和下凸壳(其实和凸包区分性不大),可以理解为这个凸多边形的上半部分和下半部分。 常见场景 维
阅读全文
摘要:插头 \(\text{dp}\) 学习笔记 前置芝士:状态压缩 \(\text{dp}\),轮廓线 \(\text{dp}\) 引入 存在一个 \(n\times m\) 的棋盘,若使用多米诺骨牌进行覆盖,有多少种方式能不重叠不遗漏的覆盖整个棋盘? 对于上面的问题,使用状压 \(\text{dp}\
阅读全文
摘要:\(\text{LCT}\) 学习笔记 可曾久仰 \(\text{LCT}\) 大名,可曾听闻 \(\text{Splay}\) 骂名? 动态树 对于一棵有 \(n\) 个节点的树,如果每个点都有点权,那么求解 \(x,y\) 之间的路径上的点权和可以用树链剖分+线段树简单做到。 考虑对于一棵 \(
阅读全文
摘要:\(\text{Min}\_25\) 筛学习笔记 事实上我又学习了一个有点春的筛法。\(\text{Min}\_25\) 筛用于求解积性函数的前缀和,即形如 \(g(n)=\sum_{i=1}^{n}f(i)\) 形式的函数 \(g\)。 众所周知,朴素筛法之所以无法做到低于线性是因为枚举了区间内的
阅读全文
摘要:\(\text{Min-Max}\) 容斥学习笔记 概念 \(\text{Min-Max}\) 容斥,又称最值反演,是一种对于特定集合,在已知最小值或最大值中一者的情况下,求另一种的算法。首先观察几个式子: \[\max(a)=a\\ \max(a,b)=a+b-\min(a,b)\\ \max(a
阅读全文
摘要:位运算卷积学习笔记 位运算卷积,即快速沃尔什变换 \(\text{FWT}\) 和快速莫比乌斯变换 \(\text{FMT}\),但事实上最常用的是 \(\text{FWT}\),因为 \(\text{FMT}\) 所求解的内容是 \(\text{FWT}\) 的子集。 位运算卷积 首先要知道位运算
阅读全文
摘要:斯特林数学习笔记 前置知识 普通生成函数+下降幂+多项式 定义 斯特林数是组合数学概念,分为第一类斯特林数和第二类斯特林数 第一类斯特林数 第一类斯特林数表示为 \(\begin{bmatrix}n\\m\end{bmatrix}\),表示 \(n\) 个不同的人坐 \(m\) 张相同的圆桌的方案数
阅读全文
摘要:下降幂学习笔记 还原精灵还我笔记——来自打完笔记但关电脑前没有保存的某人的呐喊。 定义 下降幂就是形如 \(n^{\underline{m}}\) 的式子,表示 \[n^{\underline{m}}=\prod_{i=n-m+1}^{n}=\frac{n!}{(n-m)!} \]同理声明一个上升幂
阅读全文
摘要:普通生成函数学习笔记 定义 已知一个序列 \(a\),可以是有限项也可以是无限项,定义其生成函数 \(F(x)\) 为 \[F(x)=\sum a_ix^i \]作用 生成函数本质是一个多项式,所以可以进行多项式卷积,方便处理序列问题。假设序列 \(a\) 的生成函数是 \(F(x)\),序列 \(
阅读全文
摘要:二项式反演学习笔记 概念 二项式反演作为一种反演形式,常用于通过指定若干个求解恰好若干个的问题,即我们常说的容斥问题。 引入 首先讲讲朴素容斥。 作为集合来说,有 \[|A\cup B|=|A|+|B|-|A\cap B| \]这其实就是容斥原理。更一般地,有 \[|A_1\cup A_2\cup\
阅读全文
摘要:\(\text{FFT}\) 学习笔记 建议先学习普通生成函数。 多项式 确定一个多项式,往往只需要知道每一次项前的系数是多少即可。众所周知,一个朴素的多项式往往可以被写成 \[f(x)=\sum_{n\ge 0}a_nx^n \]的形式,在这种形式下的两个多项式 \(f,g\) 的乘积 \(h\)
阅读全文
摘要:原根学习笔记 原根 这是一个又臭又长的内容。 拉格朗日定理:设 \(p\) 为素数,对于模 \(p\) 意义下的整系数多项式 \[f(x)=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_0(p\nmid a_n) \]的同余方程 \(f(x)\equiv 0\pmod p\) 在模
阅读全文
摘要:替罪羊树学习笔记 史! 思想 众所周知,替罪羊树是一种平衡二叉搜索树,其拥有虽然我不理解为什么,但是很牛的复杂度。其思想在于通过一个系数进行定期重构,使得维护所有信息的树是一棵接近平衡树的伪平衡树,那么他依然拥有 \(O(\log n)\) 级别的层高,因此对于跳转查询依旧具有优异的复杂度。 但是,
阅读全文
摘要:矩阵树定理学习笔记 真的,我这辈子都没有想过行列式还能用到这种地方。 定义 图的关联矩阵 对于一张有 \(n\) 个点、\(m\) 条边的图(对于无向图,可以随便定义边的方向,因为相反的边只需要将对应列乘以 \(-1\) 即可),我们定义其关联矩阵 \(M\) 满足: \[M_{i,j}=\left
阅读全文
摘要:高斯消元学习笔记 其实这个主题能够复活主要还是粘了 \(\text{LGV}\) 引理的光,不然我还不知道高斯消元其实不光能求解线性方程组。 求解线性方程组 这个只能说是典中典了,我不相信没有一个人的高斯消元不是从这里开始的。 我们考虑求解线性方程组的本质:将每一个式子所有未知数前都有系数转化成每一
阅读全文
摘要:\(\text{LGV}\) 引理学习笔记 \(\text{LGV}\) 引理一般用于求解有向无环图中多条不相交路径的方案数,引理内容如下。 引理 定义 \(w(P)\) 指的是路径 \(P\) 上所有边权的乘积(在路径计数问题中认为所有边权均为 \(1\) 即可),\(e(A,B)\) 指的是 \
阅读全文