The 10th Shandong Provincial Collegiate Programming Contest

Contest Info


[Practice Link](https://cn.vjudge.net/contest/303285)
Solved A B C D E F G H I J K L M
12/13 O O O O O O - O Ø Ø O O O
  • O 在比赛中通过
  • Ø 赛后通过
  • ! 尝试了但是失败了
  • - 没有尝试

Solutions


A. Calandar

签到题。
代码:

view code
#include <bits/stdc++.h>
using namespace std;

int y[2], m[2], d[2];
map <string, int> mp;
string ss[10], s;

int main() {
	mp["Monday"] = 1;
	mp["Tuesday"] = 2;
	mp["Wednesday"] = 3;
	mp["Thursday"] = 4;
	mp["Friday"] = 5;
	ss[1] = "Monday";
	ss[2] = "Tuesday";
	ss[3] = "Wednesday";
	ss[4] = "Thursday";
	ss[5] = "Friday";
	ios::sync_with_stdio(false);
	cin.tie(0); cout.tie(0);
	int T; cin >> T;
	while (T--) {
		cin >> y[0] >> m[0] >> d[0] >> s;
		cin >> y[1] >> m[1] >> d[1];
		int now = mp[s] - 1;
		int add = 0;
		if (d[1] >= d[0]) {
			add += d[1] - d[0];
		} else {
			add += 30 - d[0] + d[1];
		}
		now = (now + add) % 5;
		cout << ss[now + 1] << "\n";
	}
	return 0;
}

B. Flipping Game

题意:
有两个01串\(s, t\),每一轮在\(s\)串中选择任意\(m\)个进行翻转\(0 \rightarrow 1, 1 \rightarrow 0\),求恰好\(k\)轮之后\(s\)变成\(t\)的方案数。

思路:
\(f[i][j]\)表示在第\(i\)轮,有\(j\)个在正确位置上的方案数,组合数转移即可。

代码:

view code
#include <bits/stdc++.h>
using namespace std;

#define ll long long
#define N 110
int n, k, m;
const ll p = 998244353;
ll f[N][N];
char st[N], ed[N]; 
ll inv[N], fac[N];
ll qmod(ll base, ll n) {
	ll res = 1;
	while (n) {
		if (n & 1) {
			res = res * base % p;
		}
		base = base * base % p;
		n >>= 1;
	}
	return res;
}
ll C(int n, int m) {
	if (n == 0 && m == 0) {
		return 1;
	}
	if (n < m) {
		return 0;
	}
	return 1ll * fac[n] * inv[m] % p * inv[n - m] % p; 
}

void init() {
	for (int i = 0; i <= k; ++i) {
		for (int j = 0; j <= n; ++j) {
			f[i][j] = 0;
		}
	}
}
int main() {
	fac[0] = 1;
	for (int i = 1; i < N; ++i) {
		fac[i] = fac[i - 1] * i % p;
	}
	inv[100] = qmod(fac[100], p - 2); 
	for (int i = 100; i >= 1; --i) {
		inv[i - 1] = inv[i] * i % p;  
	}
	int T; scanf("%d", &T);
	while (T--) {
		scanf("%d%d%d", &n, &k, &m);
		init();
		scanf("%s%s", st + 1, ed + 1);
		int ini = 0;
		for (int i = 1; i <= n; ++i) {
			ini += (st[i] == ed[i]);
		}
		//f[i][j] 表示第i轮  有j个在正确位置上
		f[0][ini] = 1;
		for (int i = 1; i <= k; ++i) {
			for (int j = 0; j <= n; ++j) {
				//当j >= o 的时候
				for (int o = 0; o <= j; ++o) {
					int gap = j - o;
					if (m >= gap && (m - gap) % 2 == 0) {
						//表示把x个正确的翻转成不正确的
						int x = (m - gap) / 2;
						//表示把y个不正确的翻转成正确的  
						int y = x + gap;
						(f[i][j] += C(o, x) * C(n - o, y) % p * f[i - 1][o] % p) %= p;
					}
				}
				//当j < o 的时候
				for (int o = j + 1; o <= n; ++o) {
					int gap = o - j;
					if (m >= gap && (m - gap) % 2 == 0) {
						//表示把x个不正确的翻转成正确的
						int x = (m - gap) / 2;
						//表示把y个正确的翻转成不正确的
						int y = x + gap;
						(f[i][j] += C(o, y) * C(n - o, x) % p * f[i - 1][o] % p) %= p;
					}
				}
			}
		}
	//	puts("#####################################");
	//	for (int i = 1; i <= k; ++i) {
	//		for (int j = 0; j <= n; ++j) {
	//			printf("%d %d %lld\n", i, j, f[i][j]);
	//		}
	//	}
		printf("%lld\n", f[k][n]);
	}
	return 0;
}

C. Wandering Robot

题意:
机器人从\((0, 0)\)出发,现在要求走\(k\)轮,每轮走\(n\)步,求这个过程中的最大曼哈顿距离。

思路:
暴力第\(1\)轮以及第\(k\)轮,中间的轮数直接加上一轮的结果就好了。
因为如果一轮的行走结果导致曼哈顿距离变小的话,那么不可能通过走若干个完整轮 + 一个部分轮达到最有解。

代码:

view code
#include <bits/stdc++.h>
using namespace std;

#define ll long long
#define N 100010
int n, k;
char s[N];

int main() {
	int T; scanf("%d", &T);
	while (T--) {
		scanf("%d%d", &n, &k);
		scanf("%s", s + 1);
		ll x = 0, y = 0;
		ll res = 0;
		for (int i = 1; i <= n; ++i) {
			if (s[i] == 'L') {
				--x; 
			} else if (s[i] == 'R') {
				++x;
			} else if (s[i] == 'U') {
				--y;
			} else if (s[i] == 'D') {
				++y;
			}
			res = max(res, abs(x) + abs(y));
		}
		ll tmp = 1ll * (k - 1) * (abs(x) + abs(y));
		res = max(res, tmp);
		ll nx = 1ll * (k - 1) * x, ny = 1ll * (k - 1) * y;
		for (int i = 1; i <= n; ++i) {
			if (s[i] == 'L') {
				--nx;
			} else if (s[i] == 'R') {
				++nx;
			} else if (s[i] == 'U') {
				--ny;
			} else if (s[i] == 'D') {
				++ny;
			}
			res = max(res, abs(nx) + abs(ny));
		}
		printf("%lld\n", res);
	}
	return 0;
}

D. Game on a Graph

题意:
两个队伍的人在一张图上进行博弈,每次每个人轮流选择一条边删去,谁删去之后图不连通了,那么这个人所属的队伍就输了。

思路:
显然,可移动的边只有\(m - (n - 1)\)条。

代码:

view code
#include <bits/stdc++.h>
using namespace std;

#define N 100010
int k, n, m;
int a[N];
char s[N];

int main() {
	int T; scanf("%d", &T);
	while (T--) {
		scanf("%d", &k);
		scanf("%s", s + 1);
		for (int i = 1; i <= k; ++i) {
			a[i] = s[i] - '0';
		}
		scanf("%d%d", &n, &m);
		for (int i = 1; i <= m; ++i) scanf("%*d%*d");
		int tot = (m - (n - 1));
		printf("%d\n", ((a[tot % k + 1] - 1) ^ 1) + 1);
	}
	return 0;
}

E. BaoBao Loves Reading

题意:
询问\(Least\;Recently\;Used (LRU)\)算法进行换页操作的时候,页表容量为\(1, \cdots, n\)的时候的换页次数分别为多少

思路:
我们考虑以下不用换页的次数,根据\(LRU\)算法的特性,我们注意到两个相同页之间的不同页个数如果为\(x\),那么当页表容量$ > x$的时候这一次换页是不需要的。
树状数组+前缀和维护一下即可。

代码:

view code
#include <bits/stdc++.h>
using namespace std;

#define N 101010
int n, a[N], b[N], pre[N];
struct BIT {
	int a[N];
	void init(int n) {
		for (int i = 0; i <= n + 10; ++i) {
			a[i] = 0;
		}
	} 
	void update(int x, int val) {
		for (; x < n + 10; x += x & -x) {
			a[x] += val;
		}
	}
	int query(int x) {
		int res = 0;
		for (; x > 0; x -= x & -x) {
			res += a[x];
		}
		return res;
	}
}bit;

void init() {
	for (int i = 0; i <= n; ++i) {
		b[i] = 0;
		pre[i] = 0;
	}
	bit.init(n);
}
int main() {
	int T; scanf("%d", &T);
	while (T--) {
		scanf("%d", &n);
		init();
		for (int i = 1; i <= n; ++i) {
			scanf("%d", a + i);
		}
		for (int i = 1; i <= n; ++i) {
			if (pre[a[i]]) {
				int tot = bit.query(i) - bit.query(pre[a[i]]);
				++b[tot + 1];
				bit.update(pre[a[i]], -1);
			}
			bit.update(i, 1);
			pre[a[i]] = i;
		}
		for (int i = 1; i <= n; ++i) {
			b[i] += b[i - 1];
			printf("%d%c", n - b[i], " \n"[i == n]);
		}
	}
	return 0;
}

F. Stones in the Bucket

题意:
\(n\)堆石头,两种操作:

  • 从一堆非空的石头中移除一个
  • 从一堆非空的石头中移动一个到另一堆

询问最少多少次操作使得所有堆的石头个数相同。

思路:
容易发现如果知道最终每堆石头的个数,那么操作次数是固定的,并且具有单调性。
二分即可,注意check是否可以。

代码:

view code
#include <bits/stdc++.h>
using namespace std;

#define ll long long
#define N 100010
int n, a[N];
ll tot;
bool check(ll x) {
	ll remind = 0;
	for (int i = 1; i <= n; ++i) {
		if (a[i] > x) {
			remind += a[i] - x;
		}
	}
	ll tmp = remind;
	for (int i = 1; i <= n; ++i) {
		if (a[i] < x) {
			remind -= x - a[i];
		}
	}
	if (remind >= 0) {
		tot = min(tot, tmp);
		return true;
	}
	return false;
}

int main() {
	int T; scanf("%d", &T);
	while (T--) {
		scanf("%d", &n);
		for (int i = 1; i <= n; ++i) {
			scanf("%d", a + i);
		}
		tot = 1e18;
		ll l = 0, r = 1e9;
		while (r - l >= 0) {
			ll mid = (l + r) >> 1;
			if (check(mid)) {
				l = mid + 1;
			} else {
				r = mid - 1;
			}
		}
		printf("%lld\n", tot);  
	}
	return 0;
}

H. Tokens on the Segments

题意:
二维平面上有\(n\)条线段,每条线段为\((l_i, i) \rightarrow (r_i, i)\),平面上的每个整点上都可以放置一个令牌,但是要求任意两个令牌的横坐标不相同,问最多有多少条线段上放着令牌。

思路:
先将所有线段按左端点排序,然后从\(Min \rightarrow Max\)枚举线段上每一个点,将左端点小于当前点的所有右端点放进小顶堆,每次取右端点最小的拿出来放在当前点。
注意遍历的时候如果堆空的时候要注意跳跃指针。

代码:

view code
#include <bits/stdc++.h>

using namespace std;

const int maxn = 1e5 + 10;

struct node {
	int l, r;
	node(){}
	node(int l, int r):l(l), r(r){}
	bool operator < (const node &other) const {
		if (l == other.l) return r < other.r;
		else return l < other.l;
	}
}arr[maxn];

int n;

int main() {
	int t;
	scanf("%d", &t);
	while(t--){
		scanf("%d", &n);
		int Min = 1e9 + 10;
		int Max = 0;
		for (int i = 1; i <= n; ++i) {
			scanf("%d %d", &arr[i].l, &arr[i].r);
			Min = min(Min, arr[i].l);
			Max = max(Max, arr[i].r);
		}
		sort(arr + 1, arr + 1 + n);
		int ans = 0;
		priority_queue<int, vector<int>, greater<int> >q;
		int pos = 0;
		for (int i = Min; i <= Max; ++i) {
			while(pos <= n && arr[pos].l <= i) q.push(arr[pos++].r);
			while(!q.empty() && q.top() < i) q.pop();
			if(!q.empty()) {
				ans++;
				q.pop();
			}
			if(q.empty()) {
				if(pos > n) {
					break;
				}
				i = max(i, arr[pos].l - 1);
			}
		}
		printf("%d\n", ans);
	}
	return 0;
}

I - Connected Intervals

题意:
给出一棵树,问存在多少个子树(树上的连通块),使得这个连通块里面的点的标号是连续的。

思路:
我们考虑\(ma[i]\)表示\((i, i + 1)\)路径上的标号的最大值,\(mi[i]\)表示\((i, i + 1)路径上的标号的最小值\)
然后我们考虑一段区间\([l, r]\)这个点在树上是一个连通块,那么当且仅当:

\[\begin{eqnarray*} max(ma[i], i \in [l, r - 1]) == r \\ min(mi[i], i \in [l, r - 1]) == l \end{eqnarray*} \]

那么我们考虑分治,考虑对于:

  • 左边每个点求出\(f_{max}[i]\)表示点\(i\)\(mid\)这段区间形成任意相邻两点路径上的标号的最大值,同理\(f_{min}[i]\)表示最小值。
  • 对于右边每个点求出\(g_{max}[i]\)表示点\(i\)\(mid\)这段区间形成任意相邻两点路径上的标号的最大值,同理\(g_{min}[i]\)表示最小值。

那么每次分治的时候,我们只统计跨过区间中点\(mid\)的区间个数,这样每个合法区间只会被统计一次。
那么我们考虑枚举左边每个点为左端点,这个点能成为左端点当且仅当\(f_min[i] = i\),然后然后所有右边的点,它能成为右端点当且仅当\(g_{max}[j] = j\)
那么我们将合法的右端点丢进树状数组维护,每次对于一个左端点,只需要查询\(g_{min}[j] \in [i, n]\)的右端点个数即可。
时间复杂度\(O(nlog^2n)\)

代码:

view code
#include <bits/stdc++.h>
using namespace std;
#define dbg(x...) do { cout << "\033[32;1m" << #x << " -> "; err(x); } while (0) 
void err() { cout << "\033[39;0m" << endl; } 
template <class T, class... Ts> void err(const T& arg, const Ts&... args) { cout << arg << ' '; err(args...); }
using ll = long long;
using pII = pair<int, int>;
#define fi first
#define se second
const int N = 3e5 + 10, M = 23, INF = 0x3f3f3f3f;
int n; ll res;
vector <vector<int>> G;
template <class T1, class T2> void chmax(T1 &x, T2 y) { if (x < y) x = y; }
template <class T1, class T2> void chmin(T1 &x, T2 y) { if (x > y) x = y; }

struct E {
	int ma, mi;
	E(int ma = -INF, int mi = INF) : ma(ma), mi(mi) {}
	void up(E other) {
		chmax(ma, other.ma);
		chmin(mi, other.mi); 
	}
}f[N], g[N]; 
//f 表示路径(i, i - 1) g 表示路径(i, i + 1)

struct W {
	int op, ma, mi;
	W() {}
	W(int op, int ma, int mi) : op(op), ma(ma), mi(mi) {}
}w[N];

struct LCA {
	int fa[N][M], deg[N]; E e[N][M]; 
	void bfs() {
		queue <int> que;
		deg[1] = 0; fa[1][0] = 1;
		e[1][0] = E(-INF, INF); 
		que.push(1); 
		while (!que.empty()) {
			int u = que.front(); que.pop();
			for (int i = 1; i < M; ++i) {
				e[u][i] = E(-INF, INF);
				e[u][i].up(e[u][i - 1]); 
				e[u][i].up(e[fa[u][i - 1]][i - 1]);
				fa[u][i] = fa[fa[u][i - 1]][i - 1]; 
			}
			for (auto &v : G[u]) {
				if (v == fa[u][0]) continue;
				deg[v] = deg[u] + 1;
				fa[v][0] = u;
			    e[v][0] = E(v, v);	
				que.push(v);
			}
		}
	}
	E dis(int u, int v) {
		if (u == v) return E(u, u);
		if (deg[u] > deg[v]) swap(u, v);
		int hu = deg[u], hv = deg[v], tu = u, tv = v;
		E res = E(-INF, INF); 
		for (int det = hv - hu, i = 0; det; det >>= 1, ++i) {
			if (det & 1) {
				res.up(e[tv][i]);
				tv = fa[tv][i]; 
			}
		}
		if (tu == tv) {
			res.up(E(tu, tu));
			return res;
		}
		for (int i = M - 1; i >= 0; --i) {
			if (fa[tu][i] == fa[tv][i]) continue;
			res.up(e[tu][i]);
			res.up(e[tv][i]);
			tu = fa[tu][i]; tv = fa[tv][i];
		}
		res.up(e[tu][0]);
		res.up(e[tv][0]);
		res.up(E(fa[tu][0], fa[tu][0]));
		return res;
	}
}lca;

struct BIT {
	int a[N], pos[N], POS;
	void init() { POS = 0; }
	void update(int x) {
		for (; x <= n + 1; x += x & -x) {
			if (pos[x] < POS) {
				pos[x] = POS;
				a[x] = 1;
			} else {
				++a[x];
			}
		}
	}
	int query(int x) {
		int res = 0;
		for (; x > 0; x -= x & -x) {
			if (pos[x] == POS)
				res += a[x];
		}
		return res;
	}
	int query(int l, int r) {
		if (l > r) return 0;
		return query(r) - query(l - 1);
	}
}bit;

void gao(int l, int r) {
	if (l == r) {
		++res;
		return;
	}
	int mid = (l + r) >> 1;
	gao(l, mid); gao(mid + 1, r);
	E now = E(mid, mid); 
	int cw = 0; 
	for (int i = mid + 1; i <= r; ++i) {
		now.up(f[i]);
		if (now.ma == i) {
			w[++cw] = W(0, now.ma, now.mi); 
		}
	}	
	now = E(mid, mid); 
	for (int i = mid; i >= l; --i) {
		if (i < mid) now.up(g[i]);
		if (now.mi == i) {
			w[++cw] = W(1, now.ma, now.mi);
		}
	}
	sort(w + 1, w + 1 + cw, [&](W x, W y){
		if (x.mi != y.mi)
			return x.mi > y.mi;
		return x.op < y.op;		
	});
	++bit.POS;
	for (int i = 1; i <= cw; ++i) {
		if (w[i].op == 0) {
			bit.update(w[i].ma);
		} else {
			res += bit.query(w[i].ma, n);	
		}
	} 
}

int main() {
	bit.init();
	int _T; scanf("%d", &_T);
	while (_T--) {
		scanf("%d", &n);
		G.clear(); G.resize(n + 1);
		for (int i = 1, u, v; i < n; ++i) {
			scanf("%d%d", &u, &v);
			G[u].push_back(v);
			G[v].push_back(u);
		}
		lca.bfs();
		for (int i = 1; i <= n; ++i) f[i] = g[i] = E(-INF, INF);
		for (int i = 2; i <= n; ++i) f[i] = lca.dis(i - 1, i);
		for (int i = n - 1; i >= 1; --i) g[i] = lca.dis(i, i + 1);
	//	for (int i = 1; i <= n; ++i) dbg(i, f[i].ma, f[i].mi, g[i].ma, g[i].mi);
		res = 0;
		gao(1, n); 	
		printf("%lld\n", res);
	}
	return 0;
}

J. Triangle City

题意:

有一个三角形城市,每个点\((i, j)(1 \leq i, j < n)\),都有三条边,\((i, j) \rightarrow (i + 1, j), (i, j) \rightarrow (i + 1, j + 1), (i + 1, j) \rightarrow (i + 1, j + 1)\)
\((1, 1) \rightarrow (n, n)\)的最长的路,要求每条边最多出现在最长路上一次。

思路:
边最多出现一次,我们想到欧拉路径,但是欧拉路径要求起点和终点的度数为奇数,其余点的度数为偶数。
可是这张图里面所有点的度数都为偶数,所以我们希望去掉起点的一条边和终点的一条边。
那么可以求一条起点到终点的最短路,这样就使得最短路上的其他点的度数\(- 2\),起点和终点的度数\(- 1\)。再跑一次欧拉路径即可。

代码:

view code
#include <bits/stdc++.h>
using namespace std;

#define N 100010
#define ll long long
#define INFLL 0x3f3f3f3f3f3f3f3f
#define pii pair <int, int>
#define fi first
#define se second
int n;
struct Graph {
	struct node {
		int to, nx, w, sta; 
		node () {}
		node (int to, int nx, int w) : to(to), nx(nx), w(w) {
			sta = 1;
		}
	}a[N << 2];
	int head[N], pos;
	void init(int n) {
		for (int i = 0; i <= n; ++i) {
			head[i] = -1;
		}
		pos = 0;
	}
	void add(int u, int v, int w) {
		a[pos] = node(v, head[u], w); head[u] = pos++;
		a[pos] = node(u, head[v], w); head[v] = pos++;
	}
}G;   
#define erp(u) for (int it = G.head[u], v = G.a[it].to, w = G.a[it].w; ~it; it = G.a[it].nx, v = G.a[it].to, w = G.a[it].w)   
int id(int i, int j) {
	return (i - 1) * n + j; 
}
pii fid(int x) {
	--x; 
	return pii(x / n + 1, x % n + 1);  
}

struct node {
	int to, pre; ll w; 
	node() {}
	node (int to, int pre, ll w) : to(to), pre(pre), w(w) {}
	bool operator < (const node &other) const {
		return w > other.w; 
	}
};
ll sum;
ll dist[N];
int used[N];
int pre[N];    
void Dijkstra() {
	for (int i = 1; i <= n * n; ++i) {
		dist[i] = INFLL;
		used[i] = 0;
		pre[i] = i; 
	}
	dist[1] = 0;
	priority_queue <node> pq;
	pq.push(node(1, -1, 0));
	while (!pq.empty()) {
		int u = pq.top().to, fa = pq.top().pre; pq.pop();
		if (used[u]) {
			continue;
		}
		pre[u] = fa;
		used[u] = 1;
		if (u == n * n) {
			sum -= dist[u];
			while (pre[u] != -1) {
				erp(u) if (v == pre[u]) {
					G.a[it].sta = 0;
					G.a[it ^ 1].sta = 0;
					break;
				}
				u = pre[u]; 
			}
		}
		erp(u) if (!used[v] && dist[v] > dist[u] + w) {
			dist[v] = dist[u] + w;
			pq.push(node(v, u, dist[v]));
		}
	}
}
vector <int> res;
void DFS(int u) {
	erp(u) if (G.a[it].sta == 1) { 
		G.a[it].sta = 0;
		G.a[it ^ 1].sta = 0;
		DFS(v);
		res.push_back(v);
	}
}

void init() {
	G.init(n * n + 10);
	sum = 0;
	res.clear();
}
int main() {
	int T; scanf("%d", &T);
	while (T--) {
		scanf("%d", &n); init();
		for (int i = 1, w; i < n; ++i) {
			for (int j = 1; j <= i; ++j) {
				scanf("%d", &w);
				G.add(id(i, j), id(i + 1, j), w);
				sum += w; 
			} 
		}
		for (int i = 1, w; i < n; ++i) {
			for (int j = 1; j <= i; ++j) {
				scanf("%d", &w);
				G.add(id(i, j), id(i + 1, j + 1), w);
				sum += w;
			}
		}
		for (int i = 1, w; i < n; ++i) {
			for (int j = 1; j <= i; ++j) {
				scanf("%d", &w);
				G.add(id(i + 1, j), id(i + 1, j + 1), w);
				sum += w; 
			}
		}
		Dijkstra();
		DFS(1);
		res.push_back(1);
		reverse(res.begin(), res.end());
		printf("%lld\n", sum);
		printf("%d\n", (int)res.size());
		for (int i = 0, sze = (int)res.size(); i < sze; ++i) {
			pii cor = fid(res[i]);
			printf("%d %d%c", cor.fi, cor.se, " \n"[i == sze - 1]);
		}
	}
	return 0;
}

K. Happy Equation

题意:
给出\(a, p\)判断有多少个\(x\)满足:

\[\begin{eqnarray*} a^x \equiv x^a \bmod 2^p \end{eqnarray*} \]

思路:

  • \(a, x\)的奇偶性要相同
  • \(a\)是奇数的时候,打表发现答案是\(1\)
  • \(a\)是偶数的时候:
    • \(x < p\)时,直接暴力。
    • \(x \geq p\)
      • \(a^p \equiv 0 \bmod p\)
      • 考虑如何让\(x^a \equiv 0 \bmod p\), 将\(x\)拆解成\(2^{ya} \cdot C\),那么要保证\(ya \geq p\)\(x\)\(2^{y}\)次的倍数。

代码:

view code
#include <bits/stdc++.h>
using namespace std;

#define ll long long
int a, p;
ll mod;
ll qmod(ll base, ll n) {
	ll res = 1;
	while (n) {
		if (n & 1) {
			res = res * base % mod;
		}
		base = base * base % mod;
		n >>= 1;
	}
	return res;  
}

int main() {
	int T; scanf("%d", &T);
	while (T--) {
		scanf("%d%d", &a, &p);
		if (a & 1) {
			puts("1");
			continue;
		}
		mod = 1ll << p; 
		if (mod > 30) {
			ll res = 0;
			for (int i = 1; i <= p; ++i) {
				if (qmod(a, i) == qmod(i, a)) {
					++res;
				}
			}
			ll remind = mod - p;
			if (a >= p) {
				printf("%lld\n", res + (remind + 1) / 2);
			} else {
				int t = (p / a) + (p % a != 0);
				t = 1ll << t;
				res += mod / t - p / t;
				printf("%lld\n", res);
			}
		} else {
			ll res = 0;
			for (int i = 1; i <= mod; ++i) {
				if (qmod(a, i) == qmod(i, a)) {
					++res;
				}
			}
			printf("%lld\n", res);
		}
	}
	return 0;
}

L. Median

题意:
\(n\)个人进行排队,有\(m\)对先后关系,问是否存在一个合法的拓扑序使得第\(i\)个在站在中间,保证\(n\)是奇数。

思路:
首先要判断是否是\(DAG\),如果不是,直接全\(0\)
对每个数爆搜出小于它的数的个数\(x\)以及大于它的数的个数\(y\),然后判断是否\(x < n / 2\)并且\(y < n / 2\)

代码:

view code
#include <bits/stdc++.h>

using namespace std;

const int maxn = 110;

int n, m;
vector<int>G1[maxn], G2[maxn];
int du[maxn];
int up[maxn], down[maxn];
int vis[maxn];
int cnt;

void DFS1(int u,int fa) {
	vis[u] = 1;
	for (auto v : G2[u]) {
		if(!vis[v]) {
			cnt++;
			DFS1(v, u);
		}
	}
}

void DFS2(int u,int fa) {
	vis[u] = 1;
	for (auto v : G1[u]) {
		if(!vis[v]) {
			cnt++;
			DFS2(v, u);
		}
	}
}

bool Topo() {
	cnt = 0;
	queue<int>q;
	for (int i = 1; i <= n; ++i) {
		if(du[i] == 0) {
			q.push(i);
		}
	}
	while(!q.empty()) {
		int u = q.front();
		q.pop();
		cnt++;
		for (auto v : G1[u]) {
			if(--du[v] == 0) {
				q.push(v);
			}
		}
	}
	return cnt == n;
}

void Init() {
	for (int i = 1; i <= n; ++i) {
		G1[i].clear();
		G2[i].clear();
		du[i] = 0;
		up[i] = 0;
		down[i] = 0;
	}
}

int main() {
	int t;
	scanf("%d", &t);
	while(t--) {
		scanf("%d %d", &n, &m);
		Init();
		for (int i = 1, u, v; i <= m; ++i) {
			scanf("%d %d", &u, &v);
			G1[u].push_back(v);
			G2[v].push_back(u);
			du[v]++;
		}
		if(!Topo()) {
			for (int i = 1; i <= n; ++i) {
				putchar('0');
			}
			putchar('\n');
			continue;
		}
		for (int i = 1; i <= n; ++i) {
			for (int j = 1; j <= n; ++j) {
				vis[j] = 0;
			}
			cnt = 0;
			DFS1(i, -1);
			up[i] = cnt;
			for (int j = 1; j <= n; ++j) {
				vis[j] = 0;
			}
			cnt = 0;
			DFS2(i, -1);
			down[i] = cnt;
		}
		for (int i = 1; i <= n; ++i) {
			if(up[i] < (n + 1) / 2 && down[i] < (n + 1) / 2) {
				putchar('1');
			} else {
				putchar('0');
			}
		}
		putchar('\n');
	}
	return 0;
}

M. Sekiro

签到题。
代码:

view code
#include <bits/stdc++.h>
using namespace std;

int main() {
	int T; scanf("%d", &T);
	while (T--) {
		int n, k;
		scanf("%d%d", &n, &k);
		while (k-- && n > 1) {
			n = (n + 1) / 2;
		}
		printf("%d\n", n);
	}
	return 0;
}
posted @ 2019-07-05 09:46  Dup4  阅读(479)  评论(0编辑  收藏  举报