c#实现图的拓扑排序、深度优先、广度优先两种算法
原文链接:https://blog.csdn.net/MfuuJava/article/details/132933517
拓扑排序是一种在有向无环图(DAG)中对节点进行排序的算法。
在 C# 中,我们可以使用深度优先搜索(DFS)和拓扑排序算法来解决这个问题。
深度优先代码:
using System;
using System.Collections.Generic;
class Graph
{
private int V; // 图中节点的数量
private List<List<int>> adj; // 邻接列表
// 构造函数
public Graph(int v)
{
V = v;
adj = new List<List<int>>(v);
for (int i = 0; i < v; ++i)
adj.Add(new List<int>());
}
// 添加边
public void AddEdge(int v, int w)
{
adj[v].Add(w);
}
// 拓扑排序的辅助函数
private void TopologicalSortUtil(int v, bool[] visited, Stack<int> stack)
{
visited[v] = true;
foreach (int i in adj[v])
{
if (!visited[i])
TopologicalSortUtil(i, visited, stack);
}
stack.Push(v);
}
// 执行拓扑排序
public void TopologicalSort()
{
Stack<int> stack = new Stack<int>();
bool[] visited = new bool[V];
for (int i = 0; i < V; i++)
visited[i] = false;
for (int i = 0; i < V; i++)
{
if (visited[i] == false)
TopologicalSortUtil(i, visited, stack);
}
// 打印排序结果
while (stack.Count > 0)
{
Console.Write(stack.Pop() + " ");
}
}
// 测试
public static void Main(string[] args)
{
Graph graph = new Graph(6);
graph.AddEdge(5, 2);
graph.AddEdge(5, 0);
graph.AddEdge(4, 0);
graph.AddEdge(4, 1);
graph.AddEdge(2, 3);
graph.AddEdge(3, 1);
Console.WriteLine("拓扑排序结果:");
graph.TopologicalSort();
Console.ReadKey();
}
}
在上述代码中,我们首先定义了一个 Graph 类,用于表示有向无环图。Graph 类包含了图中节点的数量和一个邻接列表 adj,用于存储图的边。
我们使用 AddEdge 方法向图中添加边。然后,在 TopologicalSortUtil 方法中,我们使用搜索来遍历图,并将访问过的节点压入栈中。
最后,在 TopologicalSort 方法中,我们遍历图中的所有节点,并调用 TopologicalSortUtil 方法进行拓扑排序。最终,我们打印栈中的元素,即可得到拓扑排序的结果。
在上述示例中,我们创建了一个包含6个节点的图,并添加了一些边。然后,我们执行拓扑排序,并打印排序结果。
广度优先:
using System;
using System.Collections.Generic;
public class Graph
{
private int V; //图中节点的个数
private List<int>[] adj; //图的邻接表
public Graph(int v)
{
V = v;
adj = new List<int>[v];
for (int i = 0; i < v; ++i)
adj[i] = new List<int>();
}
public void AddEdge(int v, int w)
{
adj[v].Add(w); //将节点w加入节点v的邻接表中
}
public void TopologicalSort()
{
int[] indegree = new int[V]; //用于统计每个节点的入度
for (int i = 0; i < V; ++i)
indegree[i] = 0; //统计每个节点的入度
for (int v = 0; v < V; ++v)
{
List<int> adjList = adj[v];
foreach (int w in adjList)
indegree[w]++;
}
Queue<int> queue = new Queue<int>(); //存放入度为0的节点
for (int i = 0; i < V; ++i)
{
if (indegree[i] == 0)
queue.Enqueue(i);
}
List<int> result = new List<int>(); //存放排序结果
int count = 0; //已经排序的节点个数
while (queue.Count > 0)
{
int v = queue.Dequeue();
result.Add(v);
count++; //将与节点v相邻的节点的入度减1
List<int> adjList = adj[v];
foreach (int w in adjList)
{
indegree[w]--;
if (indegree[w] == 0)
queue.Enqueue(w);
}
}
//判断是否有环
if (count != V)
{
Console.WriteLine("图中存在环!");
return;
}
//输出排序结果
Console.WriteLine("拓扑排序结果:");
foreach (int v in result)
{
Console.Write(v + " ");
}
}
}
public class Program
{
public static void Main(string[] args)
{
Graph g = new Graph(6);
g.AddEdge(5, 2);
g.AddEdge(5, 0);
g.AddEdge(4, 0);
g.AddEdge(4, 1);
g.AddEdge(2, 3);
g.AddEdge(3, 1);
g.TopologicalSort();
Console.ReadKey();
}
}
using System;
using System.Collections.Generic;
public class TopologicalSort
{
private Dictionary<char, HashSet<char>> graph;
private Dictionary<char, int> inDegrees;
public TopologicalSort(Dictionary<char, HashSet<char>> graph)
{
this.graph = graph;
inDegrees = new Dictionary<char, int>();
foreach (var vertex in graph.Keys)
{
if (!inDegrees.ContainsKey(vertex))
{
inDegrees[vertex] = 0;
}
foreach (var neighbor in graph[vertex])
{
if (!inDegrees.ContainsKey(neighbor))
{
inDegrees[neighbor] = 0;
}
inDegrees[neighbor]++;
}
}
}
public List<char> Sort()
{
Queue<char> sources = new Queue<char>();
List<char> sorted = new List<char>();
foreach (var vertex in inDegrees.Keys)
{
if (inDegrees[vertex] == 0)
{
sources.Enqueue(vertex);
}
}
while (sources.Count > 0)
{
char vertex = sources.Dequeue();
sorted.Add(vertex);
foreach (var neighbor in graph[vertex])
{
inDegrees[neighbor]--;
if (inDegrees[neighbor] == 0)
{
sources.Enqueue(neighbor);
}
}
}
if (sorted.Count != inDegrees.Count)
{
throw new InvalidOperationException("Graph has a cycle");
}
return sorted;
}
}
// 使用示例
public class Program
{
public static void Main()
{
var graph = new Dictionary<char, HashSet<char>>()
{
{ 'A', new HashSet<char>() { 'B', 'C' } },
{ 'B', new HashSet<char>() { 'D', 'E' } },
{ 'C', new HashSet<char>() { 'F' } },
{ 'D', new HashSet<char>() { 'E' } },
{ 'E', new HashSet<char>() { 'F' } },
{ 'F', new HashSet<char>() { } }
};
TopologicalSort topologicalSort = new TopologicalSort(graph);
List<char> sorted = topologicalSort.Sort();
foreach (char vertex in sorted)
{
Console.WriteLine(vertex);
}
}
}
浙公网安备 33010602011771号