Honors Calculus Notes for [2 Functions]

Definition

Def. 2.1.1 Rigorous definition of limits

We say \(\lim_{x\rightarrow a} f(x)=L\), where \(a,L\in\mathbb R\), if the following holds:

\(\forall \epsilon>0, \exists \delta >0\) such that if \(0<|x-a|<\delta\), then \(|f(x)-L|<\epsilon\).

If there exists such an \(L\in \mathbb R\) such that the above holds, we say $\lim_{x\rightarrow a}f(x) $ exists.

Def. 2.1.2 One-sided limits

We say \(\lim_{x\rightarrow a^+} f(x)=L\), where \(a,L\in\mathbb R\), if the following holds:

\(\forall \epsilon>0, \exists \delta >0\) such that if \(0<x-a<\delta\), then \(|f(x)-L|<\epsilon\).

We say \(\lim_{x\rightarrow a^-} f(x)=L\), where \(a,L\in\mathbb R\), if the following holds:

\(\forall \epsilon>0, \exists \delta >0\) such that if \(-\delta<x-a<0\), then \(|f(x)-L|<\epsilon\).

Def. 2.2 Infinity

We define \(\lim_{x\rightarrow a}f(x)=+\infty\) if the following holds:

\(\forall K>0, \exists \delta>0\) such that if \(0<|x-a|<\delta\), then \(f(x)>K\).

We define \(\lim_{x\rightarrow a}f(x)=-\infty\) if the following holds:

\(\forall K>0, \exists \delta>0\) such that if \(0<|x-a|<\delta\), then \(f(x)<-K\).

We define \(\lim_{x\rightarrow +\infty}f(x)=L\) if the following holds:

\(\forall \epsilon>0, \exists K>0\) such that if \(x>K\), then \(|f(x)-L|<\epsilon\).

We define \(\lim_{x\rightarrow -\infty}f(x)=L\) if the following holds:

\(\forall \epsilon>0, \exists K<0\) such that if \(x<K\), then \(|f(x)-L|<\epsilon\).

Def. 2.3 Continuity

A function \(f\) is said to be continuous at \(x=a\) if \(\lim_{x\rightarrow a} f(x)\) exists, \(f(a)\) is defined, and

\[\lim_{x\rightarrow a} f(x)=f(a) \]

If \(f\) is continuous at every point \(a\) in a set \(S\subset \mathbb R\), then we say \(f\) is continuous on \(S\).

Def. 2.4 Domain, Codomain, Range

The domain of a function \(f(x)\) means the set of allowable inputs.

  • If \(D\) is the domain of a function \(f(x)\), then any (non-empty) subset \(E\) of \(D\) can also taken to be the domain of \(f(x)\). The domain is usually taken as the largest set in which \(f(x)\) is defined.

The codomain of a function \(f(x)\) is the set where the outputs belong to.

  • It does not mean that everything in the codomain is a possible output.

The range of a function \(f:D\rightarrow C\) is the set of all achievable outputs. It is usually denoted by \(f(D)\) where \(D\) is the domain of \(f\). In set notations, the range of \(f\) is defined by:

\[f(D)=\lbrace f(x):x\in D \rbrace \]

Def. 2.5 Well-definedness

If \(f(x)\) has the property that every input in the domain has exactly one output, then we say \(f\) is well-defined, and \(f\) qualifies to be a function.

Def. 2.6 Injective Function

A function \(f:D\rightarrow C\) is said to be injective (or one-to-one) if

\[a\neq b \text{ in } D\Rightarrow f(a)\neq f(b). \]

Equivalently:

\[f(a)=f(b)\text{ where } a, b \text{ in } D\Rightarrow a=b \]

Def. 2.7 Increasing and decreasing functions.

Let \(I\) be an interval in the domain \(D\) of a function \(f:D\rightarrow\mathbb R\).

  • A function \(f\) is said to be strictly increasing on an interval \(I\) if

\[f(x_1)<f(x_2) \text{ for any } x_1, x_2\in I \text{ such that } x_1<x_2 \]

  • A function \(f\) is said to be strictly decreasing on an interval \(I\) if

\[f(x_1)>f(x_2) \text{ for any } x_1, x_2\in I \text{ such that } x_1<x_2 \]

Def. 2.8 Surjective Functions

A function \(f:D\rightarrow C\) is said to be surjective (or onto) if for any value \(y\) in the codomain \(C\), there is at least one \(x\) in the domain \(D\) such that \(y=f(x)\).

Def. 2.9 Bijective Functions

A function \(f:D\rightarrow C\) is said to be bijective if it is both injective and surjective.

Def. 2.9 Inverse Function

Let \(f:D\rightarrow C\) be an injective function, then there exists an inverse function \(f^{-1}:f(D)\rightarrow D\) which is defined by the rule:

\[f^{-1}(y)=x\Leftrightarrow y=f(x) \]

for any \(y\in f(D).\)

Def. 2.10 Identity Function

The identity function with domain \(D\) is a function \(id_D:D\rightarrow D\) defined by:

\[id_D(x)=x \]

for any \(x\) in \(D\).

Proposition & Theorem

Pro. 2.1

Let \(L\in\mathbb R\). We have \(\lim_{x\rightarrow a} f(x)=L\) if and only if \(\lim_{x\rightarrow a^-} f(x)=L=\lim_{x\rightarrow a^+} f(x)\).

Proof Pro 2.1

\((\Rightarrow)\) is trivial. We only need to prove \((\Leftarrow)\).

\(\forall \epsilon >0, \exists \delta_1>0\) such that \(\forall 0<x-a<\delta_1, |f(x)-L|<\epsilon\). [Def 2.1.2]

\(\forall \epsilon >0, \exists \delta_2>0\) such that \(\forall -\delta_2<x-a<0, |f(x)-L|<\epsilon\). [Def 2.1.2]

Take \(\delta=\min\lbrace \delta_1, \delta_2\rbrace>0, \forall \epsilon>0, \forall |x-a|<\delta, -\delta_2\leq-\delta<x-a<\delta\leq \delta_1, |f(x)-L|<\epsilon\).

Pro. 2.2 Arithmetic rules

Let \(a\in\mathbb R\). Suppose \(\lim_{x\rightarrow a}f(x)=L\) and \(\lim_{x\rightarrow a} g(x)=M\) both exist (\(L,M\in\mathbb R\)), then the following holds.

(a) \(\lim_{x\rightarrow a}(f(x)\pm g(x))=L\pm M\)

(b) \(\lim_{x\rightarrow a}(f(x)g(x))=LM\)

(c) If we futther assume that \(M\neq 0\), then \(\lim_{x\rightarrow a}\frac{f(x)}{g(x)}=\frac{L}{M}\)

These still holds if we replace \(x\rightarrow a\) by \(x\rightarrow a^+,x\rightarrow a^-,x\rightarrow +\infty,x\rightarrow -\infty\).

Proof Pro. 2.2(a)

\[|(a_n+b_n)-(L+M)|=|(a_n-L)+(b_n-M)|\leq |a_n-M|+|b_n-M|<\frac{\epsilon}{2}+\frac{\epsilon}{2} \]

Proof Pro. 2.2(b)

\[|a_nb_n-LM|=|(a_n-L)b_n+L(b_n-M)|\leq |a_n-L||b_n|+|L||b_n-M| \]

Pro. 2.3

  • If \(\lim_{x\rightarrow a}g(x)=\pm\infty\), then \(\lim_{x\rightarrow a}\frac{1}{g(x)}=0\).

  • If \(\lim_{x\rightarrow a}g(x)=0\) and \(g(x)>0\) when \(x\) is sufficiently close to \(a\), then \(\lim_{x\rightarrow a}\frac{1}{g(x)}=+\infty\).

  • If \(\lim_{x\rightarrow a}g(x)=0\) and \(g(x)<0\) when \(x\) is sufficiently close to \(a\), then \(\lim_{x\rightarrow a}\frac{1}{g(x)}=-\infty\).

  • If \(\lim_{x\rightarrow a}f(x)=+\infty\) and \(\lim_{x\rightarrow a}g(x)=+\infty\), then \(\lim_{x\rightarrow a} (f(x)+g(x))=+\infty\).

  • If \(\lim_{x\rightarrow a}f(x)=-\infty\) and \(\lim_{x\rightarrow a}g(x)=-\infty\), then \(\lim_{x\rightarrow a} (f(x)+g(x))=-\infty\).

  • If \(\lim_{x\rightarrow a}f(x)=\infty\) and \(\lim_{x\rightarrow a}g(x)=L\in \mathbb R\), then \(\lim_{x\rightarrow a} (f(x)+g(x))=+\infty\).

  • If \(\lim_{x\rightarrow a}f(x)=+\infty\) and \(\lim_{x\rightarrow a}g(x)=L>0\), then \(\lim_{x\rightarrow a} f(x)g(x)=+\infty\).

  • If \(\lim_{x\rightarrow a}f(x)=+\infty\) and \(\lim_{x\rightarrow a}g(x)=L<0\), then \(\lim_{x\rightarrow a} f(x)g(x)=-\infty\).

These still holds if we replace \(x\rightarrow a\) by \(x\rightarrow a^+,x\rightarrow a^-,x\rightarrow +\infty,x\rightarrow -\infty\).

Pro. 2.4 Squeeze theorem

Suppose there exists \(\delta>0\) such that \(f(x)\leq g(x)\leq h(x)\) for any \(x\in(a-\delta, a+\delta)\), and \(\lim_{x\rightarrow a}f(x)=\lim_{x\rightarrow a}h(x)=L,\) then we have \(\lim_{x\rightarrow a}g(x)=L\).

Proof Pro. 2.4

\(\forall \epsilon>0, \exists\delta_1>0\) such that \(\forall 0<|x-a|<\delta_1, |f(x)-L|<\epsilon\). [Def 2.1.1]

\(\forall \epsilon>0, \exists\delta_2>0\) such that \(\forall 0<|x-a|<\delta_2, |h(x)-L|<\epsilon\). [Def 2.1.1]

\(\therefore \forall \epsilon>0, \exists\delta^{\prime}=\min\lbrace \delta, \delta_1, \delta_2\rbrace\) such that \(\forall 0<|x-a|<\delta^{\prime}, L-\epsilon<f(x)-L<g(x)-L<h(x)-L<L+\epsilon\).

\(\therefore\lim_{x\rightarrow a}g(x)=L.\)

Pro. 2.5 Comparison rule

Suppose \(\lim_{x\rightarrow a} f(x)\) and \(\lim_{x\rightarrow a} g(x)\) exists, then the following implications hold:

(a) If \(\lim_{x\rightarrow a} f(x)<\lim_{x\rightarrow a} g(x)\), then \(\exists \delta>0\) such that \(f(x)<g(x)\) whenever \(0<|x-a|<\delta\).

(b) If \(\forall \delta >0, \exists x_\delta\in(a-\delta, a+\delta)\setminus\lbrace a\rbrace\) such that \(f(x_\delta)>g(x_\delta)\), then \(\lim_{x\rightarrow a} f(x)\geq \lim_{x\rightarrow a} g(x)\).

Pro. 2.6

If \(\lim_{x\rightarrow a}f(x)=+\infty\), \(\lim_{x\rightarrow a}g(x)=L\in R\), and \(h(x)\) is a function defined near \(x=a\), then we have the following results:

(a) \(\exists \delta>0\) such that \(g(x)<f(x)\) whenever \(0<|x-a|<\delta\).

(b) If \(\exists \delta>0\) such that \(f(x)<h(x)\) whenever \(0<|x-a|<\delta\), then \(\lim_{x\rightarrow a} h(x)=+\infty\).

Proof Pro. 2.6(a)

\(\forall \epsilon>0, \exists \delta_2>0\) such that if \(0<|x-a|<\delta_2, |g(x)-L|<\epsilon\), which means \(L-\epsilon<g(x)<L+\epsilon.\) [Def. 2.1.1]

For \(K=(\max\lbrace L+\epsilon, 0\rbrace+1)>0, \exists \delta_1>0\) such that if \(0<|x-a|<\delta_1, f(x)>K>L+\epsilon.\) [Def. 2.2]

Then let \(\delta=\min\lbrace\delta_1, \delta_2\rbrace, \forall 0<|x-a|<\delta, g(x)<L+\epsilon<f(x)\)

Proof Pro. 2.6(b)

\(\forall K>0, \exists \delta_0>0, \text{such that} \forall 0<|x-a|<\delta_0, f(x)>K\). [Def. 2.2]

Let \(\theta=\min\lbrace\delta, \delta_2\rbrace\), we have \(\forall K>0, \forall 0<|x-a|<\theta, K<f(x)<h(x)\).

Then \(\lim_{x\rightarrow a}h(x)=+\infty.\) [Def. 2.2]

Pro. 2.7

Suppose \(f\) is continuous at \(x=b\in \mathbb R\), and $\lbrace a_n\rbrace $ is a sequence such that \(\lim_{n\rightarrow\infty}a_n=b\), then

\[\lim_{n\rightarrow \infty}f(a_n)=f\left(\lim_{n\rightarrow\infty}a_n\right)=f(b) \]

Similarly, suppose \(g(x)\) is a function (not necessarily continuous) such that \(\lim_{x\rightarrow a}g(x)=b\), then

\[\lim_{x\rightarrow a}f(g(x))=f\left(\lim_{x\rightarrow a}g(x)\right)=f(b) \]

Proof Pro. 2.7

Sequence

Given any \(\epsilon>0\), by the continuity of \(f\) at \(b\), there exists \(\delta>0\) such that if \(|y-b|<\delta\), then \(|f(y)-f(b)|<\epsilon\). Here we intentionally use \(y\) as the variable to avoid confusion.

Since we are also given \(\lim_{n\rightarrow \infty}a_n=b\), \(\exists N>0\) such that if \(n>N\), then \(|a_n-b|<\delta\). Hence, when putting \(y=a_n\) for \(n>N\), the condition \(|y-b|<\delta\) is satisfied, so from the above we conclude that

\[|f(a_n)-f(b)|<\epsilon\text{ .} \]

This shows \(\lim_{n\rightarrow \infty} f(a_n)=f(b)\).

Function

Given any \(\epsilon>0\), by the continuity of \(f\) at \(b\), there exists \(\delta>0\) such that if \(|y-b|<\delta\), then \(|f(y)-f(b)|<\epsilon\). Here we intentionally use \(y\) as the variable to avoid confusion.

Since we are also given \(\lim_{x\rightarrow a}g(x)=b\), \(\exists \epsilon>0\) such that if \(0<|x-a|<\epsilon\), then \(|g(x)-b|<\delta\). Hence, when putting \(y=g(x)\) for \(0<|x-a|<\epsilon\), the condition \(|y-b|<\delta\) is satisfied, so from the above we conclude that

\[|f(g(x))-f(b)|<\epsilon\text{ .} \]

This shows \(\lim_{n\rightarrow \infty} f(g(x))=f(b)\).

Pro. 2.8 Composition rule: sequence(function)

Suppose \(b(n):\mathbb N\rightarrow \mathbb R\) is a sequence such that \(\lim_{n\rightarrow\infty}b(n)=L\), where \(L\in \mathbb R\), and \(n(x):D\subset\mathbb R\rightarrow\mathbb N\) is a function of \(x\) such that \(\lim_{x\rightarrow a}n(x)=+\infty\). Then, we have

\[\lim_{x\rightarrow a}b(n(x))=L\text{ .} \]

Proof Pro. 2.8

\(\forall \epsilon>0\), from \(\lim_{n\rightarrow \infty}b(n)=L\), \(\exists N>0\) such that if \(n>N\), then \(|b(n)-L|<\epsilon\). With this \(N\), from \(lim_{x\rightarrow a}n(x)=+\infty\), \(\exists\delta>0\) such that if \(0<|x-a|<\delta\), then \(n(x)>N\). With \(n(x)>N\), we would have \(|b(n(x))-L|<\epsilon\).

Overall, we proved that \(\forall \epsilon>0\), \(\exists\delta>0\) such that if \(0<|x-a|<\delta\), then \(|b(n(x))-L|<\epsilon\). It concludes that

\[\lim_{x\rightarrow a}b(n(x))=L\text{ .} \]

Pro. 2.9 Composition rules: function(function) and function(sequence)

Suppose \(\lim_{y\rightarrow b} f(x)=L\) (here \(f\) is not assumed to be continuous at \(y=b\)). Suppose \(g(x)\) is a function such that

\[\lim_{x\rightarrow a} g(x)=b\text{ and } \exists \delta>0 \text{ such that } g(x)\neq b \text{ when } x\in (a-\delta, a+\delta)\setminus\lbrace a\rbrace \]

Then, we have

\[\lim_{x\rightarrow a}f(g(x))=L \]

Similarly, suppose \(\lbrace a_n\rbrace\) is a sequence such that

\[\lim_{n\rightarrow \infty}a_n=b\text{ and } \exists N>0 \text{ such that } a_n\neq b \text{ whenever } n>N \]

Then, we have

\[\lim_{n\rightarrow \infty}f(a_n)=L \]

Proof Pro. 2.9

function(function)

From \(\lim_{y\rightarrow b} f(y)=L\), \(\forall \epsilon>0\), \(\exists \delta>0\) such that if \(0<|y-b|<\delta, |f(y)-L|<\epsilon\).

From \(\lim_{x\rightarrow a} g(x)=b\), \(\exists\delta_2>0\) such that \(\forall 0<|x-a|<\delta_2\), \(|g(x)-b|<\delta\).

\(\therefore \exists\delta_2>0\) such that \(\forall 0<|x-a|<\delta_2\), \(|f(g(x))-L|<\epsilon\).

\(\therefore \lim_{x\rightarrow a}f(g(a))=L\).

function(sequence)

From \(\lim_{y\rightarrow b} f(y)=L\), \(\forall \epsilon>0\), \(\exists \delta>0\) such that if \(0<|y-b|<\delta, |f(y)-L|<\epsilon\).

From \(\lim_{n\rightarrow \infty} a_n=b\), \(\exists N >0\) such that \(\forall n>N\), \(|a_n-b|<\delta\).

\(\therefore \exists N>0\) such that \(\forall n>N\), \(|f(a_n)-L|<\epsilon\).

\(\therefore \lim_{n\rightarrow \infty}f(a_n)=L\).

Pro. 2.10 Archimedean Principle

\(\forall x, y>0, \exists n\in\mathbb {N} \text{ such that } nx>y.\)

Proof Pro. 2.10

Assume on the contraty that \(nx\leq y\) for all \(n\in\mathbb N\), then the set

\[S:=\lbrace nx:n\in\mathbb N\rbrace \]

would be bounded from above by \(y\). The Completeness Axiom shows \(S\) has the least upper bound, denote by \(\sup S\in\mathbb R\). Since it is the least upper bound, \(\sup S -x\) is not an upper bound for \(S\), so there exists \(mx\in S\) (where \(m\in\mathbb N\)) such that \(\sup S-x<mx\). However, it implies \(\sup S<(m+1)x\). Since \((m+1)x\in S\), it contradicts to the fact that \(\sup S\) is an upper bound for \(S\).

Pro. 2.11 Density of rational numbers

For any \(a, b\in \mathbb R\) such that \(a<b\), there exists \(r\in \mathbb Q\) such that \(a<r<b\)

Proof Pro. 2.11

Consider \(b-a>0\), the Archimedean Principle asserts that there exists \(n\in \mathbb N\) such that \(n(b-a)>1\), or in other words, the open interval \((na, nb)\) has length \(>1\). Then \((na, nb)\) mush contain an integer \(m\in \mathbb Z\). It can be proved using the Well-Ordering Axiom of natural numbers. Then we have

\[na<m<nb\Rightarrow a<\frac{m}{n}<b \]

As \(\frac{m}{n}\in Q\), we finish the proof.

Coro. 2.12

For any \(x\in \mathbb R\), there exists a sequence \(\lbrace r_n\rbrace\) of rational numbers such that \(\lim_{n\rightarrow \infty}r_n=x\).

Proof Coro. 2.12

For each \(n\in \mathbb N\), we consider the open interval \((x-\frac{1}{n}, x+\frac{1}{n})\). Density of rational numbers show \(\exists r_n\in(x-\frac{1}{n}, x+\frac{1}{n})\). In other words, we have

\[x-\frac{1}{n}<r_n<x+\frac{1}{n}\text{ } \forall n\in \mathbb N \]

Since \(x-\frac{1}{n}\rightarrow x\) and \(x+\frac{1}{n}\rightarrow x\) as \(n\rightarrow \infty\), the squeeze theorem shows \(r_n\rightarrow x\) too.

Theo. 2.13 Intermediate value theorem

Suppose \(f\) is continuous on \([a, b]\), and \(f(a)<f(b)\). Suppose \(L\in \mathbb R\) such that \(f(a)<L<f(b)\), then \(\exists c\in(a, b)\) such that \(f(c)=L\).

Coro. 2.14

Suppose \(f\) is continuous on \([a, b]\), and \(f(a)f(b)<0\) (i.e. \(f(a)\) and \(f(b)\) have different sign), then \(f\) has a root in \((a, b)\).

Pro. 2.15

Let \(f:[a, b]\rightarrow \mathbb R\) be a continuous injective function on \([a, b]\), then \(f\) is either strictly increasing or strictly decreasing on \([a, b]\).

Lemma 2.16

Suppose \(f:[a, b]\rightarrow \mathbb R\) be a continuous injective function on \([a, b]\), and given \(x_1, x_2, x_3\in[a, b]\) with \(x_1<x_2<x_3\). Then, we have either \(f(x_1)<f(x_2)<f(x_3)\) or \(f(x_1)>f(x_2)>f(x_3)\)

Pro. 2.17

Let \(f:[a, b]\rightarrow \mathbb R\) be a continuous injective function on \([a, b]\), then \(f^{-1}:f([a, b])\rightarrow [a, b]\) is continuous.

posted @ 2024-10-24 14:09  Displace  阅读(17)  评论(0)    收藏  举报