Honors Calculus Notes for [1 Sequences]
Definition
Def. 1.1 Limit of a sequence
If the following holds:
\(\forall \epsilon>0,\exists N>0\) such that if \(n>N,\) then \(|a_n-L|<\epsilon\)
Def. 1.2 Subsequences
Let \(\lbrace a_n\rbrace_{n=1}^\infty\) be a sequence of real numbers. A subsequence of \(\lbrace a_n\rbrace_{n=1}^\infty\) is in the form \(\lbrace a_{n_k}\rbrace_{k=1}^\infty\), where \(n_k\in \mathbb N\) for all \(k\in\mathbb N\), and
Def. 1.3 Monotone sequences
A sequence \(\lbrace a_n\rbrace\) is said to be:
-
monotone increasing if \(a_n\leq a_{n+1}\) for any \(n\in\mathbb N\)
-
strictly increasing if \(a_n< a_{n+1}\) for any \(n\in\mathbb N\)
-
monotone decreasing if \(a_n\geq a_{n+1}\) for any \(n\in\mathbb N\)
-
strictly decreasing if \(a_n> a_{n+1}\) for any \(n\in\mathbb N\)
Def. 1.4 Bounded sequences
A sequence \(\lbrace x_n\rbrace\) is said to be bounded from above if there exists a constant \(\beta\in\mathbb R\) such that \(x_n\leq \beta\) for any \(n\in \mathbb N\). It is said to be bounded from below if there exists a constant \(\alpha\in\mathbb R\) such that \(x_n\geq \alpha\) for any \(n\in \mathbb N\).
If the sequence is both bounded from above and from below, we may simply say the sequence is bounded
Def. 1.5 Euler's number
Def. 1.6 Cauchy sequences
\(\lbrace a_n\rbrace\) is said to be a a Cauchy sequence if the following holds
\(\forall \epsilon>0, \exists N>0\) such that if \(m,n>N\), then \(|a_m-a_n|<\epsilon\).
Def. 1.7 Infinity
Given a sequence of real numbers \(\lbrace a_n\rbrace\), if \(\forall K>0, \exists N>0\) such that \(\forall n>N, a_n>K\), we say \(\lim_{n\rightarrow\infty} a_n=+\infty\).
Likewise, if \(\forall K>0, \exists N>0\) such that \(\forall n>N, a_n<-K\), we say \(\lim_{n\rightarrow\infty} a_n=-\infty\).
Proposition & Theorem
Pro. 1.1 Arithmetic Rules
We have:
-
\(\lim_{n\rightarrow\infty}c=c\) where \(c\) is a constant.
-
\(\lim_{n\rightarrow\infty}\frac{1}{n^p}=0\) where \(p>0\) is a fixed positive number.
-
If \(\lim_{n\rightarrow\infty} a_n=L\) and \(\lim_{n\rightarrow\infty} b_n=M\) where \(L\) and \(M\) are finite numbers, then
(a) \(\lim_{n\rightarrow\infty} a_n\pm b_n=L\pm M\)
(b) \(\lim_{n\rightarrow\infty}a_nb_n=LM\)
(c) Suppose that \(M\neq 0\), then \(\lim_{n\rightarrow\infty}\frac{a_n}{b_n}=\frac{L}{M}\)
Proof 2
Proof 3.(a)
Proof 3.(b)
Pro. 1.2 Squeeze Theorem
If there exists \(N>0\) such that \(a_n\leq b_n\leq c_n\) for any \(n\geq N\), and
where \(L\in \mathbb R\) (i.e. finite), then \(\lbrace b_n\rbrace\) also has limit and \(\lim_{n\rightarrow\infty}b_n=L\).
Proof Pro. 1.2 Squeeze Theorem
\(\forall \epsilon>0\), \(\exists N_1>0\) such that \(\forall n>N_1, |a_n-L|<\epsilon\). In particular we have
Similarly, \(\exists N_2>0\) such that if \(n>N_2\), we have
\(\therefore \exists N^{\prime}=\max\lbrace N, N_1, N_2\rbrace\), such that \(\forall n>N^{\prime}\), we have
This implies \(|b_n-L|<\epsilon\).
\(\therefore \lim_{\rightarrow\infty} b_n=L\)
Pro. 1.3
Given and sequence \(\lbrace a_n\rbrace\) of real numbers, we have
\(\lim_{n\rightarrow\infty}a_n=0\Leftrightarrow\lim_{n\rightarrow\infty}|a_n|=0\)
Pro. 1.4 Comparison rules
Suppose \(\lim_{n\rightarrow\infty} a_n\) and \(\lim_{n\rightarrow\infty} b_n\) exist, then the following implications hold:
(a) If \(\lim_{n\rightarrow\infty}a_n<\lim_{n\rightarrow\infty} b_n\), then there exists \(N>0\) such that \(\forall n>N, a_n<b_n\).
(b) If there exist infinitely many \(n\)'s such that \(a_n\geq b_n\) , then \(\lim_{n\rightarrow\infty}a_n\geq \lim_{n\rightarrow\infty}b_n\).
Proof Pro. 1.4
(b) is the contrapositive of (a).It suffices to prove (a).
Denote \(\lim_{n\rightarrow\infty}a_n=L\) and \(\lim_{n\rightarrow\infty}b_n=M\), and given that \(L<M\).
Pick \(\epsilon=\frac{M-L}{2}>0\), \(\exists N_1>0\) such that if \(n>N_1\), then
Similarly, \(\exists N_2>0\) such that if \(n>N_2\), then
$\therefore $ when \(n>\max\lbrace N_1, N_2\rbrace\), we have
Pro. 1.5
If \(\lim_{n\rightarrow\infty} a_n=L\), where \(L\in \mathbb R\), then any of its subsequence \(\lbrace a_{n_k}\rbrace_{k=1}^\infty\) would also have
Proof Pro. 1.5
The face is that \(n_k\geq k\) for any \(k\in \mathbb N\).
For any \(\epsilon >0\), \(\exists N>0\) such that \(\forall n>N, |a_n-L|<\epsilon\)
\(\therefore \forall k>N, n_k\geq k>N, |a_{n_k}-L|<\epsilon\)
Corollary 1.6
Given a sequence \(\lbrace a_{n}\rbrace_{n=1}^\infty\) of real numbers, if any of the following holds:
-
there exist two subsequences \(\lbrace a_{n_k}\rbrace_{k=1}^\infty\) and \(\lbrace a_{m_j}\rbrace_{j=1}^\infty\) with different limits, or
-
there exists a subsequence \(\lbrace a_{n_k}\rbrace_{k=1}^\infty\) whose limit does not exist,
then the limit of \(\lbrace a_{n}\rbrace_{n=1}^\infty\) does not exist.
Pro. 1.7
Any convergent sequence is bounded.
Proof Pro. 1.7
Denote that \(\lim_{n\rightarrow\infty}a_n=L\).
when \(\epsilon=1>0, \exists N>0\) such that \(\forall n>N, |a_n-L|<\epsilon\), that is
\(\therefore \forall n\in\mathbb N, \min\lbrace\min_{i=1}^{N} a_i, L-1\rbrace\leq a_n\leq\max\lbrace\max_{i=1}^{N} a_i, L+1\rbrace\)
$\therefore \lbrace a_n\rbrace $ is bounded.
Theo. 1.8
Any monotone and bounded sequence must converge.
Theo. 1.9 Cauchy completeness of \(\mathbb R\)
$\lbrace a_n\rbrace $ is a Cauchy sequence in \(\mathbb R\) if and only if \(\lim_{n\rightarrow\infty} a_n\) exists in \(\mathbb R\).
Lemma 1.10
Every Cauchy sequence is bounded.
Proof Lemma 1.10
Denote \(\lbrace a_n\rbrace\) is a Cauchy sequence.
When \(\epsilon =1>0\), \(\exists N\in\mathbb N\) such that when \(m,n\geq N\), we have \(|a_m-a_n|<1\).
In particular, whenever \(n\geq N\), we have \(|a_N-a_n|<1\Rightarrow -1+a_N<a_n<1+a_N\).
\(\therefore \min\lbrace\min_{i=1}^{N-1}a_i, -1+a_N\rbrace\leq a_n\leq \max\lbrace\max_{i=1}^{N-1}a_i, 1+a_N\rbrace\).
Theo. 1.11 Bolzano-Weiestrass
Any bounded sequence \(\lbrace a_n\rbrace\) must have at least one subsequence \(\lbrace a_{n_k}\rbrace\) that converges.
Lemma 1.12
Any sequence \(\lbrace a_{n}\rbrace\) must have a monotone subsequence \(\lbrace a_{n_k}\rbrace\).
Proof Lemma 1.12
- Define \(a_k\) is a peak if \(\forall i\geq k, a_i\leq a_k\).
Case 1: If \(\lbrace a_n\rbrace\) has infinitely many peaks \((a_{n_1}, a_{n_2}, a_{n_3}, \cdots)\), where \(n_1<n_2<n_3<\cdots\).
Then, \(\lbrace a_{n_k}\rbrace\) is a monotone decreasing subsequence.
Case 2:Otherwise.
There must exist \(N\in \mathbb N\) such that \(a_n\) is not a peak for all \(n\geq N\).
Then we select some indices as follows.
-
\(m_1=N\)
-
\(\forall i\geq 1\), there exists at least one index \(t>m_i\) such that \(a_t>a_{m_i}\), as \(a_{m_i}\) is not a peak.
This implies \(a_{m_1}<a_{m_2}<a_{m_3}<\cdots\), where \(m_1<m_2<m_3<\cdots\).
Then, \(\lbrace a_{m_j}\rbrace\) is a monotone increasing subsequence.
Proof Theo. 1.11
Any monotone and bounded sequence must converge. [Theo 1.8]
\(\because\lbrace a_n\rbrace\) is a bounded sequence, and \(\lbrace a_{n_k}\rbrace\) or \(\lbrace a_{m_j}\rbrace\) is a monotone subsequence. [Lemma 1.12]
\(\therefore \lbrace a_n\rbrace\) has a bounded and monotone subsequence.
\(\therefore \lbrace a_n\rbrace\) has a subsequence that converges.
Proof Theo. 1.9
Denote \(\lbrace a_n\rbrace\) is a Cauchy sequence.
\(\lbrace a_n\rbrace\) is bounded. [Lemma 1.10]
\(\lbrace a_n\rbrace\) has a subsequence \(\lbrace a_{n_k}\rbrace\) such that \(\lim_{k\rightarrow\infty} a_{n_k}=L\), where \(L\in\mathbb R\). [Theo. 1.11]
\(\forall \epsilon>0\), \(\exists K\in \mathbb N\) such that \(\forall k\geq K, |a_{n_k}-L|<\frac{\epsilon}{2}\). [Def. 1.1]
\(\forall \epsilon>0\), \(\exists N\in\mathbb N\) such that \(\forall n, m\geq N, |a_m-a_n|<\frac{\epsilon}{2}\). [Def. 1.6]
Pick \(k_0\geq \max\lbrace N, K\rbrace\), then \(n_{k_0}\geq k_0\geq N\), we have both
and
These show for any \(n\geq N\), we have
Pro 1.13
If \(\lbrace a_n\rbrace\) is monotone increasing and unbounded, then \(a_n\rightarrow+\infty\).
Likewise, if \(\lbrace a_n\rbrace\) is monotone decreasing and unbounded, then \(a_n\rightarrow-\infty\).
Proof Pro. 1.13
\(\forall K>0\), there must exists \(a_N\) such that \(a_N>K\) (otherwise: K would be an upper bound). By monotonicity, \(a_n\geq a_N\) for any \(n\geq N\), and therefore it implies \(a_n>K\) for any \(n\geq K\).
Pro 1.14 Arithmetic rules
-
If \(a_n\rightarrow\pm \infty\), then \(\frac{1}{a_n}\rightarrow 0\).
-
If \(a_n\rightarrow 0\), then \(|\frac{1}{a_n}|\rightarrow +\infty\).
-
If $a_n\rightarrow +\infty $ and \(b_n\rightarrow +\infty\) , then \(a_n+b_n\rightarrow +\infty\).
-
If $a_n\rightarrow -\infty $ and \(b_n\rightarrow -\infty\) , then \(a_n+b_n\rightarrow -\infty\).
-
If $a_n\rightarrow \infty $ and \(b_n\rightarrow L\in\mathbb R\) , then \(a_n+b_n\rightarrow \infty\).
-
If $a_n\rightarrow \infty $ and \(b_n\rightarrow L>0\) , then \(a_nb_n\rightarrow \infty\).
-
If $a_n\rightarrow \infty $ and \(b_n\rightarrow L<0\) , then \(a_nb_n\rightarrow -\infty\).
Samples
Smp. 1.
Suppose \(\lbrace a_n\rbrace\) is a sequence of positive numbers.
If \(\lim_{n\rightarrow \infty} a_n=L\geq 0\), then
Smp. 2.
Suppose \(\lbrace a_n\rbrace\) is a sequence of real numbers.
If \(\lim_{n\rightarrow \infty} a_n=L\geq 0\), then
Smp. 3.
Suppose \(\lbrace a_n\rbrace\) is a sequence of positive numbers.
If \(\lim_{n\rightarrow \infty} a_n=L\), then
for any \(p,q\in\mathbb N^+\)
Smp. 4.
\(\lim_{n\rightarrow\infty}\frac{sin n}{n}=0\)
\(\lim_{n\rightarrow\infty}\frac{1}{\sqrt n}=0\)
\(\lim_{n\rightarrow\infty}\sqrt{n+a}-\sqrt n=0\)
\(\lim_{n\rightarrow\infty} a^\frac{1}{n}=1 (a>0)\)
\(\lim_{n\rightarrow\infty} n^\frac{1}{n}=1\)
\(\lim_{n\rightarrow\infty} a^n=0[a\in(-1, 1)]\)
\(\lim_{n\rightarrow\infty} na^n=0[a\in(-1, 1)]\)
\(\lim_{n\rightarrow\infty} \frac{p(n)}{a^n}=0\), \(a>1\) and \(p(x)\) is a polynomial
\(\lim_{n\rightarrow\infty} p(n)^\frac{1}{n}=1\), \(p(x)\) is a polynomial, and \(\forall n\in\mathbb N, p(n)\geq 1\)
Smp. 5.
Suppose \(\lbrace a_n\rbrace\) is a sequence of positive numbers such that
where \(L\in [0,1)\), then

浙公网安备 33010602011771号