Xshell







按下回车后可以看到
Xshell 8 (Build 0069)
Copyright (c) 2024 NetSarang Computer, Inc. All rights reserved.
Type `help' to learn how to use Xshell prompt.
[C:\~]$
Connecting to 182.44.113.52:22...
Connection established.
To escape to local shell, press 'Ctrl+Alt+]'.
Welcome to Ubuntu 22.04.4 LTS (GNU/Linux 5.15.0-119-generic x86_64)
* Documentation: https://help.ubuntu.com
* Management: https://landscape.canonical.com
* Support: https://ubuntu.com/pro
This system has been minimized by removing packages and content that are
not required on a system that users do not log into.
To restore this content, you can run the 'unminimize' command.
New release '24.04.2 LTS' available.
Run 'do-release-upgrade' to upgrade to it.
Last login: Fri Apr 11 16:47:44 2025 from 183.172.51.72
输入命令从一个 jump host(182.44.131.52)连接到计算节点(172.16.0.14)
ssh ywy@172.16.0.14
输入密码后可以看到
(base) ywy@ecm-cfe1-0003:~$ ssh ywy@172.16.0.14
ywy@172.16.0.14's password:
Welcome to Ubuntu 22.04.4 LTS (GNU/Linux 5.15.0-94-generic x86_64)
* Documentation: https://help.ubuntu.com
* Management: https://landscape.canonical.com
* Support: https://ubuntu.com/pro
System information as of Sun Apr 13 03:35:01 PM CST 2025
System load: 49.49 Temperature: 76.0 C
Usage of /: 39.7% of 427.47GB Processes: 2938
Memory usage: 12% Users logged in: 3
Swap usage: 0% IPv4 address for bond0: 172.16.0.14
Expanded Security Maintenance for Applications is not enabled.
5 updates can be applied immediately.
1 of these updates is a standard security update.
To see these additional updates run: apt list --upgradable
10 additional security updates can be applied with ESM Apps.
Learn more about enabling ESM Apps service at https://ubuntu.com/esm
The list of available updates is more than a week old.
To check for new updates run: sudo apt update
Failed to connect to https://changelogs.ubuntu.com/meta-release-lts. Check your Internet connection
Last login: Sun Apr 13 10:18:07 2025 from 192.168.0.6
(base) ywy@host-gpu-4:~$
这里可以查看GPU信息
(base) ywy@host-gpu-4:~/RL_W_Group/YuWang/YuWang$ nvidia-smi
Sun Apr 13 15:41:53 2025
+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 550.90.07 Driver Version: 550.90.07 CUDA Version: 12.4 |
|-----------------------------------------+------------------------+----------------------+
| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|=========================================+========================+======================|
| 0 NVIDIA H800 PCIe Off | 00000000:0E:00.0 Off | 0 |
| N/A 47C P0 127W / 350W | 19762MiB / 81559MiB | 99% Default |
| | | Disabled |
+-----------------------------------------+------------------------+----------------------+
| 1 NVIDIA H800 PCIe Off | 00000000:0F:00.0 Off | 0 |
| N/A 49C P0 115W / 350W | 37133MiB / 81559MiB | 80% Default |
| | | Disabled |
+-----------------------------------------+------------------------+----------------------+
| 2 NVIDIA H800 PCIe Off | 00000000:10:00.0 Off | 0 |
| N/A 45C P0 95W / 350W | 16774MiB / 81559MiB | 10% Default |
| | | Disabled |
+-----------------------------------------+------------------------+----------------------+
| 3 NVIDIA H800 PCIe Off | 00000000:12:00.0 Off | 0 |
| N/A 44C P0 106W / 350W | 56759MiB / 81559MiB | 91% Default |
| | | Disabled |
+-----------------------------------------+------------------------+----------------------+
| 4 NVIDIA H800 PCIe Off | 00000000:87:00.0 Off | 0 |
| N/A 42C P0 83W / 350W | 70272MiB / 81559MiB | 3% Default |
| | | Disabled |
+-----------------------------------------+------------------------+----------------------+
| 5 NVIDIA H800 PCIe Off | 00000000:88:00.0 Off | 0 |
| N/A 41C P0 87W / 350W | 70262MiB / 81559MiB | 5% Default |
| | | Disabled |
+-----------------------------------------+------------------------+----------------------+
| 6 NVIDIA H800 PCIe Off | 00000000:89:00.0 Off | 0 |
| N/A 44C P0 84W / 350W | 70310MiB / 81559MiB | 6% Default |
| | | Disabled |
+-----------------------------------------+------------------------+----------------------+
| 7 NVIDIA H800 PCIe Off | 00000000:8A:00.0 Off | 0 |
| N/A 43C P0 83W / 350W | 70128MiB / 81559MiB | 4% Default |
| | | Disabled |
+-----------------------------------------+------------------------+----------------------+
+-----------------------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=========================================================================================|
| 0 N/A N/A 974958 C python 1198MiB |
| 0 N/A N/A 1125318 C python 5948MiB |
| 0 N/A N/A 3094290 C python 1140MiB |
| 0 N/A N/A 3149323 C python 3312MiB |
| 0 N/A N/A 3965938 C ...sheng/Projects/.envs/jrz/bin/python 4158MiB |
| 0 N/A N/A 3992517 C ray::ReferenceModelRayActor 1896MiB |
| 0 N/A N/A 3992520 C ray::ActorModelRayActor.fit 2070MiB |
| 1 N/A N/A 973246 C python 6648MiB |
| 1 N/A N/A 1052536 C python 27114MiB |
| 1 N/A N/A 1118472 C python 1426MiB |
| 1 N/A N/A 3171146 C python 1924MiB |
| 2 N/A N/A 403551 C python 5238MiB |
| 2 N/A N/A 423802 C python 5240MiB |
| 2 N/A N/A 897724 C python 2096MiB |
| 2 N/A N/A 902161 C python 2098MiB |
| 2 N/A N/A 3992519 C ray::CriticModelRayActor 2070MiB |
| 3 N/A N/A 3050062 C python 30318MiB |
| 3 N/A N/A 3203731 C python 26428MiB |
| 4 N/A N/A 3341151 C ....0_deepspeed0.16.3_mini2/bin/python 70264MiB |
| 5 N/A N/A 3341152 C ....0_deepspeed0.16.3_mini2/bin/python 70254MiB |
| 6 N/A N/A 3341153 C ....0_deepspeed0.16.3_mini2/bin/python 70302MiB |
| 7 N/A N/A 3341154 C ....0_deepspeed0.16.3_mini2/bin/python 70120MiB |
+-----------------------------------------------------------------------------------------+
退出计算节点,返回 jump host 配置自己的环境
exit
conda create -n YuWang python=3.8
在终端中运行以下命令激活 YuWang 环境:
conda activate YuWang
验证环境激活
python --version
安装 nnUNet
pip install nnunet
在终端中运行以下命令,查看 nnUNet 是否能正常输出帮助信息:
nnUNet_plan_and_preprocess --help
配置环境变量,在 jump host 上,打开 ~/.bashrc 文件:
vim ~/.bashrc
文件底部添加以下内容,直接按 i 键可以对文件进行修改
export nnUNet_raw_data_base="$HOME/RL_W_Group/YuWang/unet/nnUNet_raw"
export nnUNet_preprocessed="$HOME/RL_W_Group/YuWang/unet/nnUNet_preprocessed"
export RESULTS_FOLDER="$HOME/RL_W_Group/YuWang/unet/nnUNet_trained_models"
export nnUNet_raw="$HOME/RL_W_Group/YuWang/unet/nnUNet_raw"
export nnUNet_preprocessed="$HOME/RL_W_Group/YuWang/unet/nnUNet_preprocessed"
export nnUNet_results="$HOME/RL_W_Group/YuWang/unet/nnUNet_trained_models"
在 vim 中,按 Esc 键,然后输入 :wq 保存并退出。
更新.bashrc文件:
source ~/.bashrc
验证环境变量是否正确设置:应该打印出正确的文件夹
echo $nnUNet_raw
echo $nnUNet_preprocessed
echo $nnUNet_results
在使用 nnUNet 之前,需要准备数据集并将其转换为 nnUNet 所需的格式。
下载 Task02_Heart 数据集,使用Xftp








数据下载网站:http://medicaldecathlon.com/dataaws/
将数据文件Task02_Heart传输到/home/ywy/RL_W_Group/YuWang/unet

将解压后的数据集移动到 nnUNet_raw 目录中:
mkdir -p $nnUNet_raw_data_base/nnUNet_raw_data
mv Task02_Heart $nnUNet_raw_data_base/nnUNet_raw_data/
运行以下命令将数据格式转换为 nnUNet 的格式:
nnUNet_convert_decathlon_task -i $nnUNet_raw_data_base/nnUNet_raw_data/Task02_Heart
nnUNetv2_convert_MSD_dataset -i $nnUNet_raw/Task02_Heart
数据预处理
nnUNet_plan_and_preprocess -t 002 --verify_dataset_integrity
模型训练,训练 2D U-Net 模型:
nnUNet_train 2d nnUNetTrainerV2 Task002_Heart 3
模型推理,使用训练好的模型进行推理:
nnUNet_predict -i INPUT_FOLDER -o OUTPUT_FOLDER -t 002 -m 2d

浙公网安备 33010602011771号