day26 并发编程(多进程2)

01、Process对象的join方法

join:主进程等,等待子进程结束

from multiprocessing import Process
import time
import random

class Eat(Process):
    def __init__(self,name):
        self.name=name
        super().__init__()
    def run(self):
        print('%s is eating' %self.name)
        time.sleep(random.randrange(1,3))
        print('%s is eat end' %self.name)


p=Eat('egon')
p.start()
p.join(0.0001) #等待p停止,等0.0001秒就不再等了
print('开始')

有了join,程序不就是串行了吗???

from multiprocessing import Process
import time
import random
def eat(name):
    print('%s is eating' %name)
    time.sleep(random.randint(1,3))
    print('%s is eat end' %name)

p1=Process(target=eat,args=('egon',))
p2=Process(target=eat,args=('alex',))
p3=Process(target=eat,args=('yuanhao',))
p4=Process(target=eat,args=('wupeiqi',))

p1.start()
p2.start()
p3.start()
p4.start()

#有的同学会有疑问:既然join是等待进程结束,那么我像下面这样写,进程不就又变成串行的了吗?
#当然不是了,必须明确:p.join()是让谁等?
#很明显p.join()是让主线程等待p的结束,卡住的是主线程而绝非进程p,

#详细解析如下:
#进程只要start就会在开始运行了,所以p1-p4.start()时,系统中已经有四个并发的进程了
#而我们p1.join()是在等p1结束,没错p1只要不结束主线程就会一直卡在原地,这也是问题的关键
#join是让主线程等,而p1-p4仍然是并发执行的,p1.join的时候,其余p2,p3,p4仍然在运行,等#p1.join结束,可能p2,p3,p4早已经结束了,这样p2.join,p3.join.p4.join直接通过检测,无需等待
# 所以4个join花费的总时间仍然是耗费时间最长的那个进程运行的时间
p1.join()
p2.join()
p3.join()
p4.join()

print('主线程')


#上述启动进程与join进程可以简写为
# p_l=[p1,p2,p3,p4]
# 
# for p in p_l:
#     p.start()
# 
# for p in p_l:
#     p.join()

Process对象的其他方法或属性(了解)

terminate与is_alive

#进程对象的其他方法一:terminate,is_alive
from multiprocessing import Process
import time
import random

class Eat(Process):
    def __init__(self,name):
        self.name=name
        super().__init__()

    def run(self):
        print('%s is eating' %self.name)
        time.sleep(random.randrange(1,5))
        print('%s is eat end' %self.name)


p1=Eat('egon1')
p1.start()

p1.terminate()#关闭进程,不会立即关闭,所以is_alive立刻查看的结果可能还是存活
print(p1.is_alive()) #结果为True

print('开始')
print(p1.is_alive()) #结果为False

name与pid

from multiprocessing import Process
import time
import random
class Eat(Process):
    def __init__(self,name):
        # self.name=name
        # super().__init__() #Process的__init__方法会执行self.name=Piao-1,
        #                    #所以加到这里,会覆盖我们的self.name=name

        #为我们开启的进程设置名字的做法
        super().__init__()
        self.name=name

    def run(self):
        print('%s is eating' %self.name)
        time.sleep(random.randrange(1,3))
        print('%s is eat end' %self.name)

p=Eat('egon')
p.start()
print('开始')
print(p.pid) #查看pid

02、僵尸进程与孤儿进程

一:僵尸进程(有害)
  僵尸进程:一个进程使用fork创建子进程,如果子进程退出,而父进程并没有调用wait或waitpid获取子进程的状态信息,那么子进程的进程描述符仍然保存在系统中。这种进程称之为僵死进程。详解如下
我们知道在unix/linux中,正常情况下子进程是通过父进程创建的,子进程在创建新的进程。子进程的结束和父进程的运行是一个异步过程,即父进程永远无法预测子进程到底什么时候结束,如果子进程一结束就立刻回收其全部资源,那么在父进程内将无法获取子进程的状态信息。
因此,UNⅨ提供了一种机制可以保证父进程可以在任意时刻获取子进程结束时的状态信息:
1、在每个进程退出的时候,内核释放该进程所有的资源,包括打开的文件,占用的内存等。但是仍然为其保留一定的信息(包括进程号the process ID,退出状态the termination status of the process,运行时间the amount of CPU time taken by the process等)
2、直到父进程通过wait / waitpid来取时才释放. 但这样就导致了问题,如果进程不调用wait / waitpid的话,那么保留的那段信息就不会释放,其进程号就会一直被占用,但是系统所能使用的进程号是有限的,如果大量的产生僵死进程,将因为没有可用的进程号而导致系统不能产生新的进程. 此即为僵尸进程的危害,应当避免。
任何一个子进程(init除外)在exit()之后,并非马上就消失掉,而是留下一个称为僵尸进程(Zombie)的数据结构,等待父进程处理。这是每个子进程在结束时都要经过的阶段。如果子进程在exit()之后,父进程没有来得及处理,这时用ps命令就能看到子进程的状态是“Z”。如果父进程能及时 处理,可能用ps命令就来不及看到子进程的僵尸状态,但这并不等于子进程不经过僵尸状态。 如果父进程在子进程结束之前退出,则子进程将由init接管。init将会以父进程的身份对僵尸状态的子进程进行处理。

二:孤儿进程(无害)
孤儿进程:一个父进程退出,而它的一个或多个子进程还在运行,那么那些子进程将成为孤儿进程。孤儿进程将被init进程(进程号为1)所收养,并由init进程对它们完成状态收集工作。
孤儿进程是没有父进程的进程,孤儿进程这个重任就落到了init进程身上,init进程就好像是一个民政局,专门负责处理孤儿进程的善后工作。每当出现一个孤儿进程的时候,内核就把孤 儿进程的父进程设置为init,而init进程会循环地wait()它的已经退出的子进程。这样,当一个孤儿进程凄凉地结束了其生命周期的时候,init进程就会代表党和政府出面处理它的一切善后工作。因此孤儿进程并不会有什么危害。

我们来测试一下(创建完子进程后,主进程所在的这个脚本就退出了,当父进程先于子进程结束时,子进程会被init收养,成为孤儿进程,而非僵尸进程),文件内容

import os
import sys
import time

pid = os.getpid()
ppid = os.getppid()
print 'im father', 'pid', pid, 'ppid', ppid
pid = os.fork()
#执行pid=os.fork()则会生成一个子进程
#返回值pid有两种值:
#    如果返回的pid值为0,表示在子进程当中
#    如果返回的pid值>0,表示在父进程当中
if pid > 0:
    print 'father died..'
    sys.exit(0)

# 保证主线程退出完毕
time.sleep(1)
print 'im child', os.getpid(), os.getppid()

执行文件,输出结果:
im father pid 32515 ppid 32015
father died..
im child 32516 1
看,子进程已经被pid为1的init进程接收了,所以僵尸进程在这种情况下是不存在的,存在只有孤儿进程而已,孤儿进程声明周期结束自然会被init来销毁。

三:僵尸进程危害场景:
  例如有个进程,它定期的产 生一个子进程,这个子进程需要做的事情很少,做完它该做的事情之后就退出了,因此这个子进程的生命周期很短,但是,父进程只管生成新的子进程,至于子进程 退出之后的事情,则一概不闻不问,这样,系统运行上一段时间之后,系统中就会存在很多的僵死进程,倘若用ps命令查看的话,就会看到很多状态为Z的进程。 严格地来说,僵死进程并不是问题的根源,罪魁祸首是产生出大量僵死进程的那个父进程。因此,当我们寻求如何消灭系统中大量的僵死进程时,答案就是把产生大 量僵死进程的那个元凶枪毙掉(也就是通过kill发送SIGTERM或者SIGKILL信号啦)。枪毙了元凶进程之后,它产生的僵死进程就变成了孤儿进 程,这些孤儿进程会被init进程接管,init进程会wait()这些孤儿进程,释放它们占用的系统进程表中的资源,这样,这些已经僵死的孤儿进程 就能瞑目而去了。

四:测试

#1、产生僵尸进程的程序test.py内容如下

#coding:utf-8
from multiprocessing import Process
import time,os

def run():
    print('子',os.getpid())

if __name__ == '__main__':
    p=Process(target=run)
    p.start()

    print('主',os.getpid())
    time.sleep(1000)


#2、在unix或linux系统上执行
[root@vm172-31-0-19 ~]# python3  test.py &
[1] 18652
[root@vm172-31-0-19 ~]# 主 18652
子 18653

[root@vm172-31-0-19 ~]# ps aux |grep Z
USER       PID %CPU %MEM    VSZ   RSS TTY      STAT START   TIME COMMAND
root     18653  0.0  0.0      0     0 pts/0    Z    20:02   0:00 [python3] <defunct> #出现僵尸进程
root     18656  0.0  0.0 112648   952 pts/0    S+   20:02   0:00 grep --color=auto Z

[root@vm172-31-0-19 ~]# top #执行top命令发现1zombie
top - 20:03:42 up 31 min,  3 users,  load average: 0.01, 0.06, 0.12
Tasks:  93 total,   2 running,  90 sleeping,   0 stopped,   1 zombie
%Cpu(s):  0.0 us,  0.3 sy,  0.0 ni, 99.7 id,  0.0 wa,  0.0 hi,  0.0 si,  0.0 st
KiB Mem :  1016884 total,    97184 free,    70848 used,   848852 buff/cache
KiB Swap:        0 total,        0 free,        0 used.   782540 avail Mem 

  PID USER      PR  NI    VIRT    RES    SHR S %CPU %MEM     TIME+ COMMAND                                                                                                                                        
root      20   0   29788   1256    988 S  0.3  0.1   0:01.50 elfin                                                                                                                      


#3、
等待父进程正常结束后会调用wait/waitpid去回收僵尸进程
但如果父进程是一个死循环,永远不会结束,那么该僵尸进程就会一直存在,僵尸进程过多,就是有害的
解决方法一:杀死父进程
解决方法二:对开启的子进程应该记得使用join,join会回收僵尸进程
参考python2源码注释
class Process(object):
    def join(self, timeout=None):
        '''
        Wait until child process terminates
        '''
        assert self._parent_pid == os.getpid(), 'can only join a child process'
        assert self._popen is not None, 'can only join a started process'
        res = self._popen.wait(timeout)
        if res is not None:
            _current_process._children.discard(self)

join方法中调用了wait,告诉系统释放僵尸进程。discard为从自己的children中剔除

解决方法三:http://blog.csdn.net/u010571844/article/details/50419798

思考:

from multiprocessing import Process
import time,os

def task():
    print('%s is running' %os.getpid())
    time.sleep(3)

if __name__ == '__main__':
    p=Process(target=task)
    p.start()
    p.join() # 等待进程p结束后,join函数内部会发送系统调用wait,去告诉操作系统回收掉进程p的id号

    print(p.pid) #???此时能否看到子进程p的id号
    print('主')
#答案:可以
#分析:
p.join()是像操作系统发送请求,告知操作系统p的id号不需要再占用了,回收就可以,
此时在父进程内还可以看到p.pid,但此时的p.pid是一个无意义的id号,因为操作系统已经将该编号回收

打个比方:
我党相当于操作系统,控制着整个中国的硬件,每个人相当于一个进程,每个人都需要跟我党申请一个身份证号
该号码就相当于进程的pid,人死后应该到我党那里注销身份证号,p.join()就相当于要求我党回收身份证号,但p的家人(相当于主进程)
仍然持有p的身份证,但此刻的身份证已经没有意义

03、守护进程

主进程创建守护进程

其一:守护进程会在主进程代码执行结束后就终止

其二:守护进程内无法再开启子进程,否则抛出异常:AssertionError: daemonic processes are not allowed to have children

注意:进程之间是互相独立的,主进程代码运行结束,守护进程随即终止

from multiprocessing import Process
import time
import random

class Piao(Process):
    def __init__(self,name):
        self.name=name
        super().__init__()
    def run(self):
        print('%s is piaoing' %self.name)
        time.sleep(random.randrange(1,3))
        print('%s is piao end' %self.name)


p=Piao('egon')
p.daemon=True #一定要在p.start()前设置,设置p为守护进程,禁止p创建子进程,并且父进程代码执行结束,p即终止运行
p.start()
print('主')

迷惑人的例子

#主进程代码运行完毕,守护进程就会结束
from multiprocessing import Process
from threading import Thread
import time
def foo():
    print(123)
    time.sleep(1)
    print("end123")

def bar():
    print(456)
    time.sleep(3)
    print("end456")


p1=Process(target=foo)
p2=Process(target=bar)

p1.daemon=True
p1.start()
p2.start()
print("main-------") #打印该行则主进程代码结束,则守护进程p1应该被终止,可能会有p1任务执行的打印信息123,因为主进程打印main----时,p1也执行了,但是随即被终止

04、进程同步(锁)

进程之间数据不共享,但是共享同一套文件系统,所以访问同一个文件,或同一个打印终端,是没有问题的,

而共享带来的是竞争,竞争带来的结果就是错乱,如何控制,就是加锁处理

part1:多个进程共享同一打印终端

并发运行,效率高,但竞争同一打印终端,带来了打印错乱

#并发运行,效率高,但竞争同一打印终端,带来了打印错乱
from multiprocessing import Process
import os,time
def work():
    print('%s is running' %os.getpid())
    time.sleep(2)
    print('%s is done' %os.getpid())

if __name__ == '__main__':
    for i in range(3):
        p=Process(target=work)
        p.start()

加锁:由并发变成了串行,牺牲了运行效率,但避免了竞争

#由并发变成了串行,牺牲了运行效率,但避免了竞争
from multiprocessing import Process,Lock
import os,time
def work(lock):
    lock.acquire()
    print('%s is running' %os.getpid())
    time.sleep(2)
    print('%s is done' %os.getpid())
    lock.release()
if __name__ == '__main__':
    lock=Lock()
    for i in range(3):
        p=Process(target=work,args=(lock,))
        p.start()

part2:多个进程共享同一文件

文件当数据库,模拟抢票

并发运行,效率高,但竞争写同一文件,数据写入错乱

#文件db的内容为:{"count":1}
#注意一定要用双引号,不然json无法识别
from multiprocessing import Process,Lock
import time,json,random
def search():
    dic=json.load(open('db.txt'))
    print('\033[43m剩余票数%s\033[0m' %dic['count'])

def get():
    dic=json.load(open('db.txt'))
    time.sleep(0.1) #模拟读数据的网络延迟
    if dic['count'] >0:
        dic['count']-=1
        time.sleep(0.2) #模拟写数据的网络延迟
        json.dump(dic,open('db.txt','w'))
        print('\033[43m购票成功\033[0m')

def task(lock):
    search()
    get()
if __name__ == '__main__':
    lock=Lock()
    for i in range(100): #模拟并发100个客户端抢票
        p=Process(target=task,args=(lock,))
        p.start()

加锁:购票行为由并发变成了串行,牺牲了运行效率,但保证了数据安全

#文件db的内容为:{"count":1}
#注意一定要用双引号,不然json无法识别
from multiprocessing import Process,Lock
import time,json,random
def search():
    dic=json.load(open('db.txt'))
    print('\033[43m剩余票数%s\033[0m' %dic['count'])

def get():
    dic=json.load(open('db.txt'))
    time.sleep(0.1) #模拟读数据的网络延迟
    if dic['count'] >0:
        dic['count']-=1
        time.sleep(0.2) #模拟写数据的网络延迟
        json.dump(dic,open('db.txt','w'))
        print('\033[43m购票成功\033[0m')

def task(lock):
    search()
    lock.acquire()
    get()
    lock.release()
if __name__ == '__main__':
    lock=Lock()
    for i in range(100): #模拟并发100个客户端抢票
        p=Process(target=task,args=(lock,))
        p.start()

总结:

#加锁可以保证多个进程修改同一块数据时,同一时间只能有一个任务可以进行修改,即串行的修改,没错,速度是慢了,但牺牲了速度却保证了数据安全。
虽然可以用文件共享数据实现进程间通信,但问题是:
1.效率低(共享数据基于文件,而文件是硬盘上的数据)
2.需要自己加锁处理



#因此我们最好找寻一种解决方案能够兼顾:1、效率高(多个进程共享一块内存的数据)2、帮我们处理好锁问题。这就是mutiprocessing模块为我们提供的基于消息的IPC通信机制:队列和管道。
1 队列和管道都是将数据存放于内存中
2 队列又是基于(管道+锁)实现的,可以让我们从复杂的锁问题中解脱出来,
我们应该尽量避免使用共享数据,尽可能使用消息传递和队列,避免处理复杂的同步和锁问题,而且在进程数目增多时,往往可以获得更好的可获展性。
posted @ 2021-01-20 19:56  小熊渣渣  阅读(70)  评论(0)    收藏  举报