day13 迭代器与生成器

一,迭代器

01,什么是迭代器

迭代器指的是迭代取值的工具,迭代是一个重复的过程,每次重复都是基于上一次的结果而继续的,单纯的重复不是迭代。

while True:
    msg = input('>>: ').strip()
    print(msg)

下述while循环才是一个迭代过程,不仅满足重复,而且以每次重新赋值后的index值作为下一次循环中新的索引进行取值,反复迭代,最终可以取尽列表中的值.

goods=['mac','lenovo','acer','dell','sony']

index=0
while index < len(goods):
    print(goods[index])
    index+=1

02,迭代器产生的原因

涉及到把多个值循环取出来的类型有:列表、字符串、元组、字典、打开的文件

l = ['hello','home',1,4]
i = 0
while i < len(l):
    print(l[i])
    i += 1

上述迭代取值的方式只适于有索引的数据类型,列表、字符串、元组
为了解决基于索引迭代取值的局限性,Python提供了一种不依赖索引取值的方式,就是迭代器。

03,迭代器的使用

1.可迭代对象

从语法形式上讲,内置有__iter__方法的对象都是可迭代对象,字符串、列表、元组、字典、集合、打开的文件都是可迭代对象

{'name':'egon'}.__iter__
{7,8,9}.__iter__
……

2, 迭代器对象

调用obj.iter()方法返回的结果就是一个迭代器对象(Iterator)。迭代器对象是内置有iter和next方法的对象,打开的文件本身就是一个迭代器对象,执行迭代器对象.iter()方法得到的仍然是迭代器本身,而执行迭代器.next()方法就会计算出迭代器中的下一个值。 迭代器是Python提供的一种统一的、不依赖于索引的迭代取值方式,只要存在多个“值”,无论序列类型还是非序列类型都可以按照迭代器的方式取值

>>> s={1,2,3} # 可迭代对象s
>>> i=iter(s)  # 本质就是在调用s.__iter__(),返回s的迭代器对象i,
>>> next(i) # 本质就是在调用i.__next__()
1
>>> next(i)
2
>>> next(i)
3
>>> next(i)  #抛出StopIteration的异常,代表无值可取,迭代结束
d = {'a':1,'b':2,'c':3}
d_iterator = d.__iter__()
while True:
    try:
        print(d_iterator.__next__())
    except StopIteration:
        break
print('------>>>>') #在一个迭代器取值取不干净的情况下,再对其取值取不到
while True:
    try:
        print(d_iterator.__next__())
    except StopIteration:
        break

3,for循环的工作原理

有了迭代器后,我们便可以不依赖索引迭代取值了,使用while循环的实现方式如下

goods=['mac','lenovo','acer','dell','sony']
i=iter(goods) #每次都需要重新获取一个迭代器对象
while True:
    try:
        print(next(i))
    except StopIteration: #捕捉异常终止循环
        break

for循环又称为迭代循环,in后可以跟任意可迭代对象,上述while循环可以简写为

goods=['mac','lenovo','acer','dell','sony']
for item in goods:   
    print(item)

for 循环在工作时,首先会调用可迭代对象goods内置的iter方法拿到一个迭代器对象,然后再调用该迭代器对象的next方法将取到的值赋给item,执行循环体完成一次循环,周而复始,直到捕捉StopIteration异常,结束迭代。

04,迭代器的优缺点

基于索引的迭代取值,所有迭代的状态都保存在了索引中,而基于迭代器实现迭代的方式不再需要索引,所有迭代的状态就保存在迭代器中,然而这种处理方式优点与缺点并存:

1,优点

①为序列和非序列类型提供了一种统一的迭代取值方式。

②惰性计算:迭代器对象表示的是一个数据流,可以只在需要时才去调用next来计算出一个值,就迭代器本身来说,同一时刻在内存中只有一个值,因而可以存放无限大的数据流,而对于其他容器类型,如列表,需要把所有的元素都存放于内存中,受内存大小的限制,可以存放的值的个数是有限的。

2,缺点

①除非取尽,否则无法获取迭代器的长度

②只能取下一个值,不能回到开始,更像是‘一次性的’,迭代器产生后的唯一目标就是重复执行next方法直到值取尽,否则就会停留在某个位置,等待下一次调用next;若是要再次迭代同个对象,你只能重新调用iter方法去创建一个新的迭代器对象,如果有两个或者多个循环使用同一个迭代器,必然只会有一个循环能取到值。

二,生成器

01,yield

若函数体包含yield关键字,再调用函数,并不会执行函数体代码,得到的返回值即生成器对象

>>> def my_range(start,stop,step=1):
...     print('start...')
...     while start < stop:
...         yield start
...         start+=step
...     print('end...')
... 
>>> g=my_range(0,3)
>>> g
<generator object my_range at 0x104105678>

生成器内置有__iter__和__next__方法,所以生成器本身就是一个迭代器

>>> g.__iter__
<method-wrapper '__iter__' of generator object at 0x1037d2af0>
>>> g.__next__
<method-wrapper '__next__' of generator object at 0x1037d2af0>

因而我们可以用next(生成器)触发生成器所对应函数的执行,

>>> next(g) # 触发函数执行直到遇到yield则停止,将yield后的值返回,并在当前位置挂起函数
start...
0
>>> next(g) # 再次调用next(g),函数从上次暂停的位置继续执行,直到重新遇到yield...
1
>>> next(g) # 周而复始...
2
>>> next(g) # 触发函数执行没有遇到yield则无值返回,即取值完毕抛出异常结束迭代
end...
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
StopIteration

有了yield关键字,我们就有了一种自定义迭代器的实现方式。yield可以用于返回值,但不同于return,函数一旦遇到return就结束了,而yield可以保存函数的运行状态挂起函数,用来返回多次值

02,yield表达式应用

在函数内可以采用表达式形式的yield

>>> def eater():
...     print('Ready to eat')
...     while True:
...         food=yield
...         print('get the food: %s, and start to eat' %food)
...

可以拿到函数的生成器对象持续为函数体send值,如下

>>> g=eater() # 得到生成器对象
>>> g
<generator object eater at 0x101b6e2b0>
>>> next(e) # 需要事先”初始化”一次,让函数挂起在food=yield,等待调用g.send()方法为其传值
Ready to eat
>>> g.send('包子')
get the food: 包子, and start to eat
>>> g.send('鸡腿')
get the food: 鸡腿, and start to eat
def eat(name):
    print("%s ready to eat..." %(name))
    while True:
        food = yield
        print("%s 正在吃 %s" %(name,food))
g = eat("zhangsan")
g.send(None)
g.send("大盘鸡")
g.send("活跳墙")

运行结果:
zhangsan ready to eat...
zhangsan 正在吃 大盘鸡
zhangsan 正在吃 活跳墙

针对表达式形式的yield,生成器对象必须事先被初始化一次,让函数挂起在food=yield的位置,等待调用g.send()方法为函数体传值,g.send(None)等同于next(g)。
我们可以编写装饰器来完成为所有表达式形式yield对应生成器的初始化操作,如下

def init(func):
    def wrapper(*args,**kwargs):
        g=func(*args,**kwargs)
        next(g)
        return g
    return wrapper

@init
def eater():
    print('Ready to eat')
    while True:
        food=yield
        print('get the food: %s, and start to eat' %food)

表达式形式的yield也可以用于返回多次值,即变量名=yield 值的形式,如

>>> def eater():
...     print('Ready to eat')
...     food_list=[]
...     while True:
...         food=yield food_list
...         food_list.append(food)
... 
>>> e=eater()
>>> next(e)
Ready to eat
[]
>>> e.send('蒸羊羔')
['蒸羊羔']
>>> e.send('蒸熊掌')
['蒸羊羔', '蒸熊掌']
>>> e.send('蒸鹿尾儿')
['蒸羊羔', '蒸熊掌', '蒸鹿尾儿']
posted @ 2020-12-31 15:25  小熊渣渣  阅读(72)  评论(0)    收藏  举报