Tarjan缩点求入度为零的点的个数问题
Description:
一堆人需要联系,但如果x 可以联系 y,你联系了x就不用联系y了,你联系一个人都会有固定的花费,问你最小联系多少人,和最小花费
Solution:
Tarjan缩点,求出缩点的入度,如果为0则代表这个缩点需要联系一次,缩点的时候维护好根点到达该缩点的最小值即可
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
const int maxn = 1e4 + 1e2;
const int maxm = 2e4 + 2e2;
//tarjan
int dfn[maxn],low[maxn],tot;
//edge
struct node{
int to,pre;
}e[maxn];
int id[maxn],cnt;
//color
int col[maxn],cid;
int in[maxn];
//stack
int stk[maxn],siz;
bool instk[maxn];
//Pdata
int cost[maxn];
int mincost[maxn];
void init()
{
memset(id,-1,sizeof(id));
cnt = tot = cid = siz = 0;
memset(dfn,0,sizeof(dfn));
memset(mincost,-1,sizeof(mincost));
memset(instk,0,sizeof(instk));
memset(stk,0,sizeof(stk));
memset(in,0,sizeof(in));
}
void add(int from,int to)
{
e[cnt].to = to;
e[cnt].pre = id[from];
id[from] = cnt++;
}
void tarjan(int now)
{
dfn[now] = low[now] = ++tot;
stk[siz++] = now;
instk[now] = true;
for(int i = id[now];~i;i = e[i].pre)
{
int to = e[i].to;
if(!dfn[to])
{
tarjan(to);
low[now] = min(low[now],low[to]);
}
else if(instk[to])
{
low[now] = min(low[now],dfn[to]);
}
}
if(dfn[now] == low[now])
{
++cid;
while(siz > 0 && stk[siz] != now)
{
--siz;
instk[stk[siz]] = false;
col[stk[siz]] = cid;
if(mincost[cid] == -1)mincost[cid] = cost[stk[siz]];
else mincost[cid] = min(mincost[cid],cost[stk[siz]]);
}
}
}
int main()
{
int n,m;
while(~scanf("%d%d",&n,&m))
{
init();
for(int i = 1;i <= n;++i)
scanf("%d",&cost[i]);
int from,to;
for(int i = 1;i <= m;++i)
{
scanf("%d%d",&from,&to);
add(from,to);
}
for(int i = 1;i <= n;++i)
{
if(!dfn[i])tarjan(i);
}
for(int now = 1;now <= n;++now)
{
for(int i = id[now];~i;i = e[i].pre)
{
int to = e[i].to;
if(col[now] != col[to])
{
++in[col[to]];
}
}
}
int rescnt = 0,ressum = 0;
for(int i = 1;i <= cid;++i)
{
if(!in[i])
{
ressum += mincost[i];
++rescnt;
}
}
printf("%d %d\n",rescnt,ressum);
}
return 0;
}

浙公网安备 33010602011771号