H264简介

H264简介

H.264,又称为MPEG-4 Part 10,Advanced Video Coding

  • 译为:MPEG-4第10部分,高级视频编码
  • 简称:MPEG-4 AVC

H.264是迄今为止视频录制、压缩和分发的最常用格式。截至2019年9月,已有91%的视频开发人员使用了该格式。H.264提供了明显优于以前任何标准的压缩性能。H.264因其是蓝光盘的其中一种编解码标准而著名,所有蓝光盘播放器都必须能解码H.264。

 

分层目的

视频编码层VCL

VCL数据是编码处理的输出,表示被压缩编码后的视频数据序列。【编码/压缩、切分】

网络提取层NAL

VCL数据传输和存储之前,这些VCL数据,会被封装进NAL单元中。【打包】

 

编码过程与原理

H.264的编程过程比较复杂,本文只介绍大体的框架和脉络,具体细节就不展开了。

大体可以归纳为以下几个主要步骤:

  • 划分帧类型
  • 帧内/帧间编码
  • 变换 + 量化
  • 滤波
  • 熵编码

划分帧类型

IPB帧

I 帧

帧内编码帧(Intra Coded Picture),也叫关键帧,采用帧内压缩去掉空间冗余信息。

P帧

前向预测编码帧(predictive-frame),通过将图像序列中前面已经编码帧的时间冗余

信息来压缩传输数据量的编码图像。参考前面的 I 帧或者 P 帧。

B 帧

双向预测内插编码帧 双向预测内插编码帧(bi-directional interpolated prediction frame),既考虑源图像序列前面的已编码帧,又顾及源图像序列后面的已编码帧之间的冗余信息,来压缩传输数据量的编码图像,也称为双向编码帧。参考前面一个的 I 帧或者 P 帧及其后面的一个 P 帧。

 

 

在较早的视频编码标准(例如MPEG-2)中,P帧只能使用一个参考帧,而一些现代视频编码标准(比如H.264),允许使用多个参考帧。

 

PTS 和 和 DTS

DTS(Decoding Time Stamp)是标识读入内存中 bit 流在什么时候开始送入解码器中进行

解码。也就是解码顺序的时间戳。

PTS(Presentation Time Stamp)用于度量解码后的视频帧什么时候被显示出来。在没有

B 帧的情况下,DTS 和 PTS 的输出顺序是一样的,一旦存在 B 帧,PTS 和 DTS 则会不同。也就是显示顺序的时间戳。

 

GOP

即 Group of picture(图像组),指 两个 I 帧之间的距离,Reference(参考周期)指两个 P 帧之间的距离。

 

一个 I 帧所占用的字节数大于一个 P 帧,一个 P 帧所占用的字节数大于一个 B 帧。所以

在码率不变的前提下,GOP 值越大,P、B 帧的数量会越多,平均每个 I、P、B 帧所占用

的字节数就越多,也就更容易获取较好的图像质量;Reference 越大,B 帧的数量越多,同理也更容易获得较好的图像质量。

简而言之:

字节大小:I > P > B

解码顺序:I -> P -> B

GOP的长度

GOP的长度表示GOP的帧数。GOP的长度需要控制在合理范围,以平衡视频质量、视频大小(网络带宽)和seek效果(拖动、快进的响应速度)等。

  • 加大GOP长度有利于减小视频文件大小,但也不宜设置过大,太大则会导致GOP后部帧的画面失真,影响视频质量
  • 由于P、B帧的复杂度大于I帧,GOP值过大,过多的P、B帧会影响编码效率,使编码效率降低
  • 如果设置过小的GOP值,视频文件会比较大,则需要提高视频的输出码率,以确保画面质量不会降低,故会增加网络带宽
  • GOP长度也是影响视频seek响应速度的关键因素,seek时播放器需要定位到离指定位置最近的前一个I帧,如果GOP太大意味着距离指定位置可能越远(需要解码的参考帧就越多)、seek响应的时间(缓冲时间)也越长
GOP的类型

GOP又可以分为开放(Open)、封闭(Closed)两种。

  • Open
    • 前一个GOP的B帧可以参考下一个GOP的I帧
  • Closed
    • 前一个GOP的B帧不能参考下一个GOP的I帧
    • GOP不能以B帧结尾

 

 

 

需要注意的是:

  • 由于P帧、B帧都对前面的参考帧(P帧、I帧)有依赖性,因此,一旦前面的参考帧出现数据错误,就会导致后面的P帧、B帧也出现数据错误,而且这种错误还会继续向后传播
  • 对于普通的I帧,其后的P帧和B帧可以参考该普通I帧之前的其他I帧

在Closed GOP中,有一种特殊的I帧,叫做IDR帧(Instantaneous Decoder Refresh,译为:即时解码刷新)。

  • 当遇到IDR帧时,会清空参考帧队列
  • 如果前一个序列出现重大错误,在这里可以获得重新同步的机会,使错误不会继续往下传播
  • 一个IDR帧之后的所有帧,永远都不会参考该IDR帧之前的帧
  • 视频播放时,播放器一般都支持随机seek(拖动)到指定位置,而播放器直接选择到指定位置附近的IDR帧进行播放最为便捷,因为可以明确知道该IDR帧之后的所有帧都不会参考其之前的其他I帧,从而避免较为复杂的反向解析

 

帧内/帧间编码

I帧采用的是帧内(Intra Frame)编码,处理的是空间冗余。
P帧、B帧采用的是帧间(Inter Frame)编码,处理的是时间冗余。

 

划分宏块

在进行编码之前,首先要将一张完整的帧切割成多个宏块(Macroblock),H.264中的宏块大小通常是16x16。

宏块可以进一步拆分为多个更小的变换块(Transform blocks)、预测块(Prediction blocks)。

  • 变换块的尺寸有:16x16、8x8、4x4
  • 预测块的尺寸有:16×16、16×8、8×16、8×8、8×4、4×8、4×4

 

 

帧内编码

帧内编码,也称帧内预测。以4x4的预测块为例,共有9种可选的预测模式。

 

利用帧内预测技术,可以得到预测帧,最终只需要保留预测模式信息、以及预测帧与原始帧的残差值。

编码器会选取最佳预测模式,使预测帧更加接近原始帧,减少相互间的差异,提高编码的压缩效率。

帧间编码

帧间编码,也称帧间预测,用到了运动补偿(Motion compensation)技术。

编码器利用块匹配算法,尝试在先前已编码的帧(称为参考帧)上搜索与正在编码的块相似的块。如果编码器搜索成功,则可以使用称为运动矢量的向量对块进行编码,该向量指向匹配块在参考帧处的位置。

在大多数情况下,编码器将成功执行,但是找到的块可能与它正在编码的块不完全匹配。这就是编码器将计算它们之间差异的原因。这些残差值称为预测误差,需要进行变换并将其发送给解码器。

综上所述,如果编码器在参考帧上成功找到匹配块,它将获得指向匹配块的运动矢量和预测误差。使用这两个元素,解码器将能够恢复该块的原始像素。

如果一切顺利,该算法将能够找到一个几乎没有预测误差的匹配块,因此,一旦进行变换,运动矢量加上预测误差的总大小将小于原始编码的大小。

如果块匹配算法未能找到合适的匹配,则预测误差将是可观的。因此,运动矢量的总大小加上预测误差将大于原始编码。在这种情况下,编码器将产生异常,并为该特定块发送原始编码。

DCT 变换与量化

接下来对残差值进行DCT变换(Discrete Cosine Transform,译为离散余弦变换)。

 

规格

H.264的主要规格有:

  • Baseline Profile(BP)
    • 支持I/P帧,只支持无交错(Progressive)和CAVLC
    • 一般用于低阶或需要额外容错的应用,比如视频通话、手机视频等即时通信领域
  • Extended Profile(XP)
    • 在Baseline的基础上增加了额外的功能,支持流之间的切换,改进误码性能
    • 支持I/P/B/SP/SI帧,只支持无交错(Progressive)和CAVLC
    • 适合于视频流在网络上的传输场合,比如视频点播
  • Main Profile(MP)
    • 提供I/P/B帧,支持无交错(Progressive)和交错(Interlaced),支持CAVLC和CABAC
    • 用于主流消费类电子产品规格如低解码(相对而言)的MP4、便携的视频播放器、PSP和iPod等
  • High Profile(HiP)
    • 最常用的规格
    • 在Main的基础上增加了8x8内部预测、自定义量化、无损视频编码和更多的YUV格式(如4:4:4)
    • High 4:2:2 Profile(Hi422P)
    • High 4:4:4 Predictive Profile(Hi444PP)
    • High 4:2:2 Intra Profile
    • High 4:4:4 Intra Profile
    • 用于广播及视频碟片存储(蓝光影片),高清电视的应用
 
posted @ 2025-03-19 14:16  仓俊  阅读(476)  评论(0)    收藏  举报