Volatile如何保证线程可见性之总线锁、缓存一致性协议

基础知识回顾

下图给出了假想机的基本设计。中央处理单元(CPU)是进行算术和逻辑操作的部件,包含了有限数量的存储位置——寄存器(register),一个高频时钟、一个控制单元和一个算术逻辑单元。

时钟 (clock) 对 CPU 内部操作与系统其他组件进行同步。
控制单元 (control unit, CU) 协调参与机器指令执行的步骤序列。
算术逻辑单元 (arithmetic logic unit, ALU) 执行算术运算,如加法和减法,以及逻辑运算,如 AND(与)、OR(或)和 NOT(非)。

CPU 通过主板上 CPU 插座的引脚与计算机其他部分相连。大部分引脚连接的是数据总线、控制总线和地址总线。

内存存储单元 (memory storage unit,图中没有画出来) 用于在程序运行时保存指令与数据。它接受来自 CPU 的数据请求,将数据从随机存储器 (RAM) 传输到 CPU,并从 CPU 传输到内存。

由于所有的数据处理都在 CPU 内进行,因此保存在内存中的程序在执行前需要被复制到 CPU 中。程序指令在复制到 CPU 时,可以一次复制一条,也可以一次复制多条。

总线 (bus) 是一组并行线,用于将数据从计算机一个部分传送到另一个部分。一个计算机系统通常包含四类总线:数据类、I/O 类、控制类和地址类。

数据总线 (data bus) 在 CPU 和内存之间传输指令和数据。I/O 总线在 CPU 和系统输入 / 输出设备之间传输数据。控制总线 (control bus) 用二进制信号对所有连接在系统总线上设备的行为进行同步。当前执行指令在 CPU 和内存之间传输数据时,地址总线 (address bus) 用于保持指令和数据的地址。

情景引入

有了前面的前置知识,我们都知道CPU和物理内存之间的通信速度远慢于CPU的处理速度,所以CPU有自己的内部缓存,根据一些规则将内存中的数据读取到内部缓存中来,以加快频繁读取的速度。我们假设在一台PC上只有一个CPU和一份内部缓存,那么所有进程和线程看到的数都是缓存里的数,不会存在问题;

但现在服务器通常是多 CPU,更普遍的是,每块CPU里有多个内核,而每个内核都维护了自己的缓存,那么这时候多线程并发就会存在缓存不一致性,这会导致严重问题。

以 i++为例,i的初始值是0.那么在开始每块缓存都存储了i的值0,当第一块内核做i++的时候,其缓存中的值变成了1,即使马上回写到主内存,那么在回写之后第二块内核缓存中的i值依然是0,其执行i++,回写到内存就会覆盖第一块内核的操作,使得最终的结果是1,而不是预期中的2.

缓存一致性协议

那么怎么解决整个问题呢?操作系统提供了总线锁定的机制。前端总线(也叫CPU总线,Front Side Bus))是所有CPU与芯片组连接的主干道,负责CPU与外界所有部件的通信,包括高速缓存、内存、北桥,其控制总线向各个部件发送控制信号、通过地址总线发送地址信号指定其要访问的部件、通过数据总线双向传输。在CPU1要做 i++操作的时候,其在总线上发出一个LOCK#信号,其他处理器就不能操作缓存了该共享变量内存地址的缓存,也就是阻塞了其他CPU,使该处理器可以独享此共享内存。

但我们只需要对此共享变量的操作是原子就可以了,而总线锁定把CPU和内存的通信给锁住了,使得在锁定期间,其他处理器不能操作其他内存地址的数据,从而开销较大,所以后来的CPU都提供了缓存一致性机制,Intel的奔腾486之后就提供了这种优化。

缓存一致性:缓存一致性机制就整体来说,是当某块CPU对缓存中的数据进行操作了之后,就通知其他CPU放弃储存在它们内部的缓存,或者从主内存中重新读取, 用MESI阐述原理如下:

MESI协议:是以缓存行(缓存的基本数据单位,在Intel的CPU上一般是64字节)的几个状态来命名的(全名是Modified、Exclusive、 Share or Invalid)。该协议要求在每个缓存行上维护两个状态位,使得每个数据单位可能处于M、E、S和I这四种状态之一,各种状态含义如下:

M:被修改的。处于这一状态的数据,只在本CPU中有缓存数据,而其他CPU中没有。同时其状态相对于内存中的值来说,是已经被修改的,且没有更新到内存中。
​ E:独占的。处于这一状态的数据,只有在本CPU中有缓存,且其数据没有修改,即与内存中一致。
​ S:共享的。处于这一状态的数据在多个CPU中都有缓存,且与内存一致。
​ I:无效的。本CPU中的这份缓存已经无效。

一个处于M状态的缓存行,必须时刻监听所有试图读取该缓存行对应的主存地址的操作,如果监听到,则必须在此操作执行前把其缓存行中的数据写回内存。
一个处于S状态的缓存行,必须时刻监听使该缓存行无效或者独享该缓存行的请求,如果监听到,则必须把其缓存行状态设置为I。
一个处于E状态的缓存行,必须时刻监听其他试图读取该缓存行对应的主存地址的操作,如果监听到,则必须把其缓存行状态设置为S。

​ 当CPU需要读取数据时,如果其缓存行的状态是I的,则需要从内存中读取,并把自己状态变成S,如果不是I,则可以直接读取缓存中的值,但在此之前,必须要等待其他CPU的监听结果,如其他CPU也有该数据的缓存且状态是M,则需要等待其把缓存更新到内存之后,再读取。

​ 当CPU需要写数据时,只有在其缓存行是M或者E的时候才能执行,否则需要发出特殊的RFO指令(Read Or Ownership,这是一种总线事务),通知其他CPU置缓存无效(I),这种情况下性能开销是相对较大的。在写入完成后,修改其缓存状态为M。

所以如果一个变量在某段时间只被一个线程频繁地修改,则使用其内部缓存就完全可以办到,不涉及到总线事务,如果缓存一会被这个CPU独占、一会被那个CPU 独占,这时才会不断产生RFO指令影响到并发性能。这里说的缓存频繁被独占并不是指线程越多越容易触发,而是这里的CPU协调机制,这有点类似于有时多线程并不一定提高效率,原因是线程挂起、调度的开销比执行任务的开销还要大,这里的多CPU也是一样,如果在CPU间调度不合理,也会形成RFO指令的开销比任务开销还要大。当然,这不是编程者需要考虑的事,操作系统会有相应的内存地址的相关判断

MESI失效的情景

并非所有情况都会使用缓存一致性,如被操作的数据不能被缓存在CPU内部或操作数据跨越多个缓存行(状态无法标识),则处理器会调用总线锁定;另外当CPU不支持缓存锁定时,自然也只能用总线锁定了,比如说奔腾486以及更老的CPU。总线事务的竞争,虽然有很高的一致性但是效率非常低。

内存屏障

编译器和CPU会在不影响结果(这儿主要是根据数据依赖性)的情况下对指令重排序,使性能得到优化,但是实际情况里面有些指令虽然没有前后依赖关系,但是重排序之后影响到输出结果,这时候可以插入一个内存屏障,相当于告诉CPU和编译器限于这个命令的必须先执行,后于这个命令的必须后执行。

内存屏障的另一个作用是强制更新一次不同CPU的缓存,这意味着如果你对一个volatile字段进行写操作,你必须知道:

  1. 一旦你完成写入,任何访问这个字段的线程将会得到最新的值;
  2. 在你写入之前,会保证所有之前发生的事已经发生,并且任何更新过的数据值也是可见的,因为内存屏障会把之前的写入值都刷新到缓存。

Volatile如何保证可见性?

加入volatile关键字时,会多出一个lock前缀指令,lock前缀指令实际上相当于一个内存屏障,它有三个功能:

  • 确保指令重排序时不会把其后面的指令重排到内存屏障之前的位置,也不会把前面的指令排到内存屏障后面,即在执行到内存屏障这句指令时,前面的操作已经全部完成;

  • 将当前处理器缓存行的数据立即写回系统内存(由volatile先行发生原则保证);

    先行发生(Happens-Before)是Java内存模型中定义的两项操作之间的偏序关系,比如说操作A先行发生于操作B,其实就是说在发生操作B之前,操作A产生的影响能被操作B观察到,“影响”包括修改了内存中共享变量的值、发送了消息、调用了方法等

    下面是Java内存模型下一些“天然的”先行发生关系,这些先行发生关系无须任何同步器协助就已经存在,可以在编码中直接使用。如果两个操作之间的关系不在此列,并且无法从下列规则推导出来,则它们就没有顺序性保障,虚拟机可以对它们随意地进行重排序。

    • 程序次序规则(Program Order Rule):在一个线程内,按照控制流顺序,书写在前面的操作先行发生于书写在后面的操作。注意,这里说的是控制流顺序而不是程序代码顺序,因为要考虑分支、循环等结构。
    • 管程锁定规则(Monitor Lock Rule):一个unlock操作先行发生于后面对同一个锁的lock操作。这里必须强调的是“同一个锁”,而“后面”是指时间上的先后。
    • volatile变量规则(Volatile Variable Rule):对一个volatile变量的写操作先行发生于后面对这个变量的读操作,这里的“后面”同样是指时间上的先后。
    • 线程启动规则(Thread Start Rule):Thread对象的start()方法先行发生于此线程的每一个动作。
    • 线程终止规则(Thread Termination Rule):线程中的所有操作都先行发生于对此线程的终止检测,我们可以通过Thread::join()方法是否结束、Thread::isAlive()的返回值等手段检测线程是否已经终止执行。
    • 线程中断规则(Thread Interruption Rule):对线程interrupt()方法的调用先行发生于被中断线程的代码检测到中断事件的发生,可以通过Thread::interrupted()方法检测到是否有中断发生。
    • 对象终结规则(Finalizer Rule):一个对象的初始化完成(构造函数执行结束)先行发生于它的finalize()方法的开始。
    • 传递性(Transitivity):如果操作A先行发生于操作B,操作B先行发生于操作C,那就可以得出操作A先行发生于操作C的结论。
  • 这个写回内存的操作会引起在其他CPU里缓存了该内存地址的数据无效。写回操作时要经过总线传播数据,而每个处理器通过嗅探在总线上传播的数据来检查自己缓存的值是不是过期了,当处理器发现自己缓存行对应的内存地址被修改,就会将当前处理器的缓存行设置为无效状态,当处理器要对这个值进行修改的时候,会强制重新从系统内存里把数据读到处理器缓存(也是由volatile先行发生原则保证);

缓存一致性协议有多种,但是日常处理的大多数计算机设备都属于”嗅探(snooping)”机制,它的基本思想是:
所有内存的传输都发生在一条共享的总线上,而所有的处理器都能看到这条总线:缓存本身是独立的,但是内存是共享资源,所有的内存访问都要经过仲裁(同一个指令周期中,只有一个CPU缓存可以读写内存)。
CPU缓存不仅仅在做内存传输的时候才与总线打交道,而是不停在嗅探总线上发生的数据交换,跟踪其他缓存在做什么。所以当一个缓存代表它所属的处理器去读写内存时,其它处理器都会得到通知,它们以此来使自己的缓存保持同步。只要某个处理器一写内存,其它处理器马上知道这块内存在它们的缓存段中已失效。

可以得出lock指令的几个作用:
1、锁总线,其它CPU对内存的读写请求都会被阻塞,直到锁释放,不过实际后来的处理器都采用锁缓存替代锁总线,因为锁总线的开销比较大,锁总线期间其他CPU没法访问内存
2、lock后的写操作会回写已修改的数据,同时让其它CPU相关缓存行失效,从而重新从主存中加载最新的数据
3、不是内存屏障却能完成类似内存屏障的功能,阻止屏障两遍的指令重排序

由于效率问题,实际后来的处理器都采用锁缓存来替代锁总线,这种场景下多缓存的数据一致是通过缓存一致性协议来保证的 。

MESI协议的问题

既然CPU有了MESI协议可以保证cache的一致性,那么为什么还需要volatile这个关键词来保证可见性(内存屏障)?或者是只有加了volatile的变量在多核cpu执行的时候才会触发缓存一致性协议?

两个解释结论:

  1. 多核情况下,所有的cpu操作都会涉及缓存一致性的校验,只不过该协议是弱一致性,不能保证一个线程修改变量后,其他线程立马可见,也就是说虽然其他CPU状态已经置为无效,但是当前CPU可能将数据修改之后又去做其他事情,没有来得及将修改后的变量刷新回主存,而如果此时其他CPU需要使用该变量,则又会从主存中读取到旧的值。而volatile则可以保证可见性,即立即刷新回主存,修改操作和写回操作必须是一个原子操作;
  2. 正常情况下,系统操作并不会进行缓存一致性的校验,只有变量被volatile修饰了,该变量所在的缓存行才被赋予缓存一致性的校验功能。

volatile的使用场景举例

一句话来说就是保证线程可见性以及禁止指令重排序,具体就是三个场景:

  1. 状态标志(开关模式)
  2. 双重检查锁定
  3. 需要利用顺序性

举个DCL的例子:

synchronized关键字是防止多个线程同时执行一段代码,那么就会很影响程序执行效率,而volatile关键字在某些情况下性能要优于synchronized,但是volatile关键字是无法替代synchronized关键字的,因为volatile关键字无法保证操作的原子性。通常来说,使用volatile必须具备以下2个条件:

  • 对变量的写操作不依赖于当前值;
  • 该变量没有包含在具有其他变量的不变式中。

下面列举两个使用场景

  • 状态标记量(本文中代码的列子)
  • 双重检查(单例模式)
Copyclass Singleton{
    private volatile static Singleton instance = null;
     
    private Singleton() {
         
    }
     
    public static Singleton getInstance() {
        if(instance==null) { // 1
            synchronized (Singleton.class) {
                if(instance==null)
                    instance = new Singleton();  //2
            }
        }
        return instance;
    }
}

上述的Instance类变量是没有用volatile关键字修饰的,会导致这样一个问题:

在线程执行到第1行的时候,代码读取到instance不为null时,instance引用的对象有可能还没有完成初始化(先赋值默认值,再赋值初始值),但是已经赋予了默认值。

造成这种现象主要的原因是重排序。重排序是指编译器和处理器为了优化程序性能而对指令序列进行重新排序的一种手段。

第二行代码可以分解成以下几步

Copyemory = allocate();  // 1:分配对象的内存空间
ctorInstance(memory); // 2:初始化对象
instance = memory;  // 3:设置instance指向刚分配的内存地址

根源在于代码中的2和3之间,可能会被重排序。例如:

Copy
memory = allocate();  // 1:分配对象的内存空间
instance = memory;  // 3:设置instance指向刚分配的内存地址
// 注意,此时对象还没有被初始化!
ctorInstance(memory); // 2:初始化对象

这种重排序可能就会导致一个线程拿到的instance是非空的但是还没初始化完全的对象。

posted @ 2021-02-14 11:31  等不到的口琴  阅读(2767)  评论(0编辑  收藏  举报