HDU - 4009 - Transfer water -(最小树形图+超级点)
题目链接:点击进入
题目
Input
Multiple cases.
First line of each case contains 4 integers n (1<=n<=1000), the number of the households, X (1<=X<=1000), Y (1<=Y<=1000), Z (1<=Z<=1000).
Each of the next n lines contains 3 integers a, b, c means the position of the i‐th households, none of them will exceeded 1000.
Then next n lines describe the relation between the households. The n+i+1‐th line describes the relation of the i‐th household. The line will begin with an integer k, and the next k integers are the household numbers that can build a water line from the i‐th household.
If n=X=Y=Z=0, the input ends, and no output for that.
Output
One integer in one line for each case, the minimal money the whole village need so that every household has water. If the plan does not exist, print “poor XiaoA” in one line.
Sample Input
2 10 20 30 1 3 2 2 4 1 1 2 2 1 2 0 0 0 0
Sample Output
30
Hint
In 3‐dimensional space Manhattan distance of point A (x1, y1, z1) and B(x2, y2, z2) is |x2‐x1|+|y2‐y1|+|z2‐z1|.
题意
最小树形图(不定根)
思路
超级点+朱刘算法
代码
#include<cstdio> #include<algorithm> #include<queue> #include<cstring> #include<iostream> #include<cmath> #include<stack> #define inf 0x3f3f3f3f using namespace std; const int maxn=1010; typedef long long ll; struct Node { int x; int y; int z; }point[maxn]; struct node//边的权和顶点 { int u; int v; ll w; }edge[maxn*maxn]; int pre[maxn],id[maxn],vis[maxn],n,m,pos; ll in[maxn];//存最小入边权,pre[v]为该边的起点 ll Directed_MST(int root,int V,int E)//朱刘算法求最小树形图(有向图) { ll res=0;//存最小树形图总权值 while(1) { //1.找每个节点的最小入边 for(int i=0;i<V;i++) in[i]=inf;//初始化为无穷大 for(int i=0;i<E;i++)//遍历每条边 { int u=edge[i].u; int v=edge[i].v; if(edge[i].w<in[v]&&u!=v)//说明顶点v有条权值较小的入边 ,记录之 { pre[v]=u;//节点u指向v in[v]=edge[i].w;//最小入边 if(u==root)//这个点就是实际的起点 pos=i; } } for(int i=0;i<V;i++)//判断是否存在最小树形图 { if(i==root) continue; if(in[i]==inf) return -1;//除了根以外有点没有入边,则根无法到达它 说明它是独立的点 一定不能构成树形图 } //2.找环 int cnt=0;//记录环数 memset(id,-1,sizeof(id)); memset(vis,-1,sizeof(vis)); in[root]=0; for(int i=0;i<V;i++) //标记每个环 { res+=in[i];//记录权值 int v=i; while(vis[v]!=i&&id[v]==-1&&v!=root) { vis[v]=i; v=pre[v]; } if(v!=root&&id[v]==-1) { for(int u=pre[v];u!=v;u=pre[u]) id[u]=cnt;//标记节点u为第几个环 id[v]=cnt++; } } if(cnt==0) break; //无环 则break for(int i=0;i<V;i++) if(id[i]==-1) id[i]=cnt++; //3.建立新图 缩点,重新标记 for(int i=0;i<E;i++) { int u=edge[i].u; int v=edge[i].v; edge[i].u=id[u]; edge[i].v=id[v]; if(id[u]!=id[v]) edge[i].w-=in[v]; } V=cnt; root=id[root]; } return res; } int main() { int x,y,z,k,p,tot=0; while(~scanf("%d%d%d%d",&n,&x,&y,&z)) { tot=0; if(n==0&&x==0&&y==0&&z==0) break; for(int i=1;i<=n;i++) scanf("%d%d%d",&point[i].x,&point[i].y,&point[i].z); for(int i=1;i<=n;i++) { scanf("%d",&k); while(k--) { scanf("%d",&p); if(p==i) continue; int tmp=(abs(point[i].x-point[p].x)+abs(point[i].y-point[p].y)+abs(point[i].z-point[p].z))*y; //边权值的计算 if(point[i].z<point[p].z) tmp+=z; edge[tot].u=i,edge[tot].v=p,edge[tot++].w=tmp; } } for(int i=tot;i<tot+n;i++)//增加超级节点0,节点0到其余各个节点的边权相同 { edge[i].u=0; edge[i].v=i-tot+1; edge[i].w=point[i-tot+1].z*x; } ll ans=Directed_MST(0,n+1,tot+n); printf("%lld\n",ans); } return 0; }

浙公网安备 33010602011771号