欧拉函数

欧拉函数\(\varphi(n)\)表示\(1-n\)中与\(n\)互质的数的个数
若在算数基本定理中\(n=\prod\limits_{i=1}^m p_i^{c_i}\)
则有\(\varphi(n)=n\times\dfrac{p_1-1}{p_1}\times\dfrac{p_2-1}{p_2}\times\dfrac{p_3-1}{p_3}\times...\times\dfrac{p_m-1}{p_m}=n\times\prod\limits_{i=1}^m(1-\dfrac{1}{p_i})\)

性质1:\(\forall n>1,1\)~\(n\)中与n互质的数的和为\(\dfrac{n}{2}\times\varphi(n)\)
证明:\(\because \gcd(n,x)=\gcd(n,n-x)\)
\(\therefore\)所有与\(n\)互质的\(x\)\(n-x\)成对出现,其平均数为\(\dfrac{n}{2}\)
\(\therefore\)与n互质的数的和为\(\dfrac{n}{2}\times\varphi(n)\)(平均数乘上个数就是和)

性质2:若\(a,b\)互质,则\(\varphi(ab)=\varphi(a)\varphi(b)\)
证明:通过欧拉函数的定义,分解质因数后,显然等式成立

性质3:若在算数基本定理中\(n=\prod\limits_{i=1}^m p_i^{c_i}\),则\(\varphi(n)=\prod\limits_{i=1}^m \varphi(p_i^{c_i})\)
证明:显然由性质2易证
注:对于任意积性函数\(f(n)\),同样均有\(f(n)=\prod\limits_{i=1}^m f(p_i^{c_i})\)
关于积性函数的定义:若\(f(n)\)是积性函数,当且仅当\(\forall \gcd(a,b)=1\),有$ f(ab)=f(a)f(b)$

性质4:若有质数\(p\),且\(p\mid n,p^2\mid n\),则\(\varphi(n)=\varphi(\dfrac{n}{p})\times p\)
证明:显然对\(n\)\(\frac{n}{p}\)质因数分解,只有\(p\)的指数相差\(1\),那么通过欧拉函数的定义就可以得到\(\dfrac{\varphi(n)}{\varphi(\frac{n}{p})}=p\)

性质5:若有质数\(p\),且\(p\mid n,p^2\nmid n\),则\(\varphi(n)=\varphi(\dfrac{n}{p})\times(p-1)\)
证明:由条件可知\(\gcd(n,\dfrac{n}{p})=1\),那么\(\varphi(n)=\varphi(\dfrac{n}{p}\times p)=\varphi(\dfrac{n}{p})\times\varphi(p)=\varphi(\dfrac{n}{p})\times(p-1)\)

性质6:对于质数\(p\),有\(\varphi(p^c)=p^c-p^{c-1}\)
证明:\(\varphi(p^c)=p^c\times(1-\dfrac{1}{p})=p^c-p^{c-1}\)

性质7:\(\sum_{d\mid n}\varphi(d)=n\)
证明:设\(f(n)=\sum_{d\mid n}\varphi(d),\gcd(a,b)=1\)
\(f(a)f(b)=\sum_{d\mid a}\varphi(d)\times\sum_{d\mid b}\varphi(d)=\sum_{i\mid a}\sum_{j\mid b}\varphi(i)\varphi(j)=\sum_{i\mid a}\sum_{j\mid b}\varphi(ij)=\sum_{d\mid ab}\varphi(d)=f(ab)\)
所以\(f(n)\)是积性函数
那么\(f(n)=\prod\limits_{i=1}^m f(p_i^{c_i})\)
同时对于质数\(p\),有\(f(p^c)=\sum_{d\mid p^c}\varphi(d)=\sum\limits_{i=0}^c\varphi(p^i)=1+\sum\limits_{i=1}^c(p^i-p^{i-1})=p^c\)
那么\(f(n)=\prod\limits_{i=1}^m f(p_i^{c_i})=\prod\limits_{i=1}^m p_i^{c_i}=n\)

posted @ 2021-08-09 23:13  Colala  阅读(148)  评论(0)    收藏  举报